Project02/AITrain/prepare_dialogue_data.py

89 lines
2.8 KiB
Python
Raw Normal View History

2025-08-07 16:20:20 +08:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
准备角色对话微调数据集
将test.jsonl转换为适合LoRA训练的格式
'''
import json
import random
from typing import List, Dict
def load_dialogue_data(file_path: str) -> List[Dict]:
"""加载对话数据"""
dialogues = []
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line.strip())
2025-08-09 08:18:18 +08:00
if data and isinstance(data, dict) and 'role' in data:
dialogues.append(data)
else:
pass
2025-08-07 16:20:20 +08:00
return dialogues
def get_dialogue_characters(dialogues: List[Dict]) -> List[str]:
characters = []
for dialogue in dialogues:
character = dialogue['role']
if character not in characters:
characters.append(character)
return characters
def group_dialogues_by_character(dialogues: List[Dict]) -> Dict[str, List[str]]:
"""按角色分组对话"""
character_dialogues = {}
for dialogue in dialogues:
character = dialogue['role']
content = dialogue['dialogue']
if character not in character_dialogues:
character_dialogues[character] = []
character_dialogues[character].append(content)
return character_dialogues
def create_character_dialogue_samples(character:str, dialogues: List[Dict]) ->List[Dict]:
tempDialogue = ""
character_samples = []
for dialogue in dialogues:
speakCharacter = dialogue['role']
if(speakCharacter != character):
tempDialogue = dialogue['dialogue']
elif tempDialogue != '':
#确定是提问对话
2025-08-08 10:16:38 +08:00
character_samples.append({"character": character,
"instruction": tempDialogue,
2025-08-07 16:20:20 +08:00
"input": "",
"output": dialogue['dialogue']})
tempDialogue = ''
return character_samples
def main():
# 加载原始数据
dialogues = load_dialogue_data('./test.jsonl')
characters = get_dialogue_characters(dialogues)
character_dialogues = group_dialogues_by_character(dialogues)
print("角色统计:")
for char, convs in character_dialogues.items():
print(f" {char}: {len(convs)}条对话")
#获得最终训练数据
2025-08-08 10:16:38 +08:00
final_samples = []
2025-08-07 16:20:20 +08:00
for character in characters:
2025-08-08 10:16:38 +08:00
final_samples += create_character_dialogue_samples(character, dialogues)
2025-08-07 16:20:20 +08:00
# 保存为JSON格式
with open('./npc_dialogue_dataset.json', 'w', encoding='utf-8') as f:
json.dump(final_samples, f, ensure_ascii=False, indent=2)
print(f"\n生成了 {len(final_samples)} 个训练样本")
print("数据集已保存为: npc_dialogue_dataset.json")
if __name__ == '__main__':
main()