Project02/AITrain/npc_dialogue_generator.py

362 lines
14 KiB
Python
Raw Normal View History

2025-08-14 07:17:50 +08:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
游戏NPC角色对话生成器
基于微调后的LoRA模型生成角色对话
'''
import torch
import json
import random
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import Dict, List, Optional
import platform
# Windows multiprocessing兼容性修复
if platform.system() == "Windows":
import multiprocessing
multiprocessing.set_start_method('spawn', force=True)
class NPCDialogueGenerator:
def __init__(self, base_model_path: str, lora_model_path: Optional[str] = None):
"""
初始化NPC对话生成器
Args:
base_model_path: 基础模型路径
lora_model_path: LoRA模型路径可选
"""
self.base_model_path = base_model_path
self.lora_model_path = lora_model_path
self.model = None
self.tokenizer = None
self.character_profiles = self._load_character_profiles()
self._load_model()
def _load_character_profiles(self) -> Dict:
"""加载角色画像数据"""
return {
"维多利亚·布莱克伍德": {
"name": "维多利亚·布莱克伍德",
"title": "神秘学专家",
"personality": ["理性分析", "谨慎小心", "实用主义", "思维缜密"],
"background": "拥有丰富神秘学知识和战斗经验的侦探,既是非凡者也是夏洛克·莫里亚蒂",
"speech_patterns": ["会使用专业术语", "经常进行逻辑分析", "对危险保持警告", "内心独白较多"],
"sample_dialogues": [
"好奇往往是导致死亡的主要因素。",
"总之,我的任务到此为止。",
"这需要仔细分析才能得出结论。"
]
},
"阿奇博尔德·韦恩博士": {
"name": "阿奇博尔德·韦恩博士",
"title": "神秘学导师",
"personality": ["沉稳睿智", "言简意赅", "关怀学生", "经验丰富"],
"background": "神秘学领域的资深专家,经验极其丰富的导师,知识渊博",
"speech_patterns": ["话语简练但信息量大", "给予实用指导", "语调平和但权威", "关心但保持距离"],
"sample_dialogues": [
"耐心是修炼的基础。",
"不要急于求成,稳扎稳打比什么都重要。",
"这种情况需要格外小心。"
]
},
"塔利姆": {
"name": "塔利姆",
"title": "文雅绅士",
"personality": ["礼貌尊敬", "有文化素养", "寻求帮助", "温和友善"],
"background": "受过良好教育的普通人,有一定的文学修养,遇到困难时会寻求专家帮助",
"speech_patterns": ["使用礼貌称谓", "表达困惑时措辞文雅", "会引用文学作品", "语气温和"],
"sample_dialogues": [
"噢,尊敬的大侦探,你最近在忙碌什么?",
"这不是《罗密欧与朱丽叶》的故事!",
"我有个朋友遇到了困难..."
]
},
"艾伦": {
"name": "艾伦",
"title": "困扰的求助者",
"personality": ["焦虑不安", "详细描述", "半信半疑", "急需帮助"],
"background": "普通人,但最近遭遇了一系列神秘的厄运事件,怀疑受到诅咒",
"speech_patterns": ["情绪紧张", "会详细描述遭遇", "语气急切", "表现出恐惧"],
"sample_dialogues": [
"最近我总是遭遇各种厄运...",
"我怀疑是不是受到了什么诅咒。",
"请帮帮我,我不知道该怎么办!"
]
},
"戴莉.西蒙妮": {
"name": "戴莉·西蒙妮",
"title": "专业调查员",
"personality": ["专业简洁", "直接明确", "严谨认真", "目标导向"],
"background": "负责调查神秘事件的专业人员,办事效率高,问题直接",
"speech_patterns": ["问题直接明确", "语气专业", "注重事实", "简洁有力"],
"sample_dialogues": [
"请详细描述事件经过。",
"有什么证据可以证明?",
"这件事需要立即调查。"
]
}
}
def _load_model(self):
"""加载模型和分词器"""
print(f"Loading tokenizer from: {self.base_model_path}")
self.tokenizer = AutoTokenizer.from_pretrained(
self.base_model_path,
use_fast=False,
trust_remote_code=True
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
print(f"Loading base model from: {self.base_model_path}")
self.model = AutoModelForCausalLM.from_pretrained(
self.base_model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
# 如果有LoRA模型则加载
if self.lora_model_path:
print(f"Loading LoRA weights from: {self.lora_model_path}")
self.model = PeftModel.from_pretrained(self.model, self.lora_model_path)
def generate_character_dialogue(
self,
character_name: str,
context: str = "",
user_input: str = "",
temperature: float = 0.8,
max_new_tokens: int = 150,
top_p: float = 0.9
) -> str:
"""
生成指定角色的对话
Args:
character_name: 角色名称
context: 对话上下文
user_input: 用户输入/触发内容
temperature: 采样温度
max_new_tokens: 最大生成token数
top_p: 核采样参数
Returns:
生成的对话内容
"""
if character_name not in self.character_profiles:
raise ValueError(f"Unknown character: {character_name}")
profile = self.character_profiles[character_name]
# 构建系统提示
system_prompt = self._build_system_prompt(profile, context)
# 构建用户输入
if not user_input:
user_input = "请说一段符合你角色设定的话。"
# 准备消息
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input}
]
# 应用对话模板
inputs = self.tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True,
enable_thinking=False
)
# 移动到设备
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
# 生成对话
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
pad_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.1
)
# 解码输出
response = outputs[0][inputs['input_ids'].shape[1]:]
dialogue = self.tokenizer.decode(response, skip_special_tokens=True).strip()
return dialogue
def _build_system_prompt(self, profile: Dict, context: str = "") -> str:
"""构建系统提示"""
personality_str = "".join(profile["personality"])
speech_pattern_str = "".join(profile["speech_patterns"])
system_prompt = f"""你是游戏中的NPC角色{profile["name"]}{profile["title"]})。
角色背景{profile["background"]}
性格特点{personality_str}
说话风格{speech_pattern_str}
请严格按照这个角色的设定来回应保持角色的一致性和独特性"""
if context:
system_prompt += f"\n\n当前情境:{context}"
return system_prompt
def generate_dialogue_conversation(self, character1: str, character2: str, topic: str, turns: int = 4) -> List[Dict]:
"""生成两个角色之间的对话
Args:
character1: 第一个角色
character2: 第二个角色
topic: 对话主题
turns: 对话轮数
Returns:
对话列表每个元素包含speaker和dialogue
"""
conversation = []
context = f"现在{character1}{character2}在讨论关于{topic}的话题。"
for turn in range(turns):
if turn % 2 == 0:
# character1 说话
speaker = character1
if turn == 0:
user_input = f"开始和{character2}讨论{topic}这个话题。"
else:
# 基于上一轮对话内容
last_dialogue = conversation[-1]["dialogue"]
user_input = f"{character2}刚才说:\"{last_dialogue}\"。请回应。"
else:
# character2 说话
speaker = character2
last_dialogue = conversation[-1]["dialogue"]
user_input = f"{character1}刚才说:\"{last_dialogue}\"。请回应。"
dialogue = self.generate_character_dialogue(
speaker, context, user_input, temperature=0.8
)
conversation.append({
"speaker": speaker,
"dialogue": dialogue
})
return conversation
def get_character_info(self, character_name: str) -> Dict:
"""获取角色信息"""
return self.character_profiles.get(character_name, {})
def list_available_characters(self) -> List[str]:
"""列出所有可用角色"""
return list(self.character_profiles.keys())
def main():
"""测试对话生成器"""
# 配置路径
base_model_path = '/mnt/g/Project02/AITrain/Qwen/Qwen3-8B-AWQ'
lora_model_path = './output/NPC_Dialogue_LoRA/final_model' # 如果没有训练LoRA设为None
# 检查LoRA模型是否存在
import os
if not os.path.exists(lora_model_path):
print("LoRA模型不存在使用基础模型")
lora_model_path = None
# 创建对话生成器
generator = NPCDialogueGenerator(base_model_path, lora_model_path)
print("=== 游戏NPC角色对话生成器 ===")
print(f"可用角色:{', '.join(generator.list_available_characters())}")
# 测试单个角色对话生成
print("\n=== 单角色对话测试 ===")
test_scenarios = [
{
"character": "克莱恩",
"context": "玩家向你咨询神秘学知识",
"input": "请告诉我一些关于灵界的注意事项。"
},
{
"character": "阿兹克",
"context": "学生遇到了修炼瓶颈",
"input": "导师,我在修炼中遇到了困难。"
},
{
"character": "塔利姆",
"context": "在俱乐部偶遇老朋友",
"input": "好久不见,最近怎么样?"
}
]
for scenario in test_scenarios:
print(f"\n--- {scenario['character']} ---")
print(f"情境:{scenario['context']}")
print(f"输入:{scenario['input']}")
dialogue = generator.generate_character_dialogue(
scenario["character"],
scenario["context"],
scenario["input"]
)
print(f"回复:{dialogue}")
# 测试角色间对话
print("\n=== 角色间对话测试 ===")
conversation = generator.generate_dialogue_conversation(
"克莱恩", "塔利姆", "最近遇到的神秘事件", turns=4
)
for turn in conversation:
print(f"{turn['speaker']}{turn['dialogue']}")
# 交互式对话模式
print("\n=== 交互式对话模式 ===")
print("输入格式:角色名 上下文 用户输入")
print("例如:克莱恩 在俱乐部 请给我一些建议")
print("输入'quit'退出")
while True:
try:
user_command = input("\n请输入指令: ").strip()
if user_command.lower() == 'quit':
break
parts = user_command.split(' ', 2)
if len(parts) < 2:
print("格式错误,请使用:角色名 上下文 [用户输入]")
continue
character = parts[0]
context = parts[1]
user_input = parts[2] if len(parts) > 2 else ""
if character not in generator.list_available_characters():
print(f"未知角色:{character}")
print(f"可用角色:{', '.join(generator.list_available_characters())}")
continue
dialogue = generator.generate_character_dialogue(
character, context, user_input
)
print(f"\n{character}{dialogue}")
except KeyboardInterrupt:
break
except Exception as e:
print(f"生成对话时出错:{e}")
print("\n对话生成器已退出")
if __name__ == '__main__':
main()