更新模型训练逻辑

This commit is contained in:
997146918 2025-08-08 10:17:40 +08:00
parent 9d081893aa
commit 249bfbcb9f
3 changed files with 305 additions and 53 deletions

View File

@ -0,0 +1,299 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
角色对话LoRA微调训练脚本
基于test.jsonl数据微调Qwen 8B模型生成游戏NPC对话
'''
import json
import os
import torch
from peft import LoraConfig, PeftModel, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import TrainingArguments, Trainer, DataCollatorForSeq2Seq
from datasets import Dataset
import platform
import swanlab
from swanlab.integration.transformers import SwanLabCallback
# Windows multiprocessing兼容性修复
if platform.system() == "Windows":
import multiprocessing
multiprocessing.set_start_method('spawn', force=True)
os.environ['VLLM_USE_MODELSCOPE'] = 'True'
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["TORCH_USE_CUDA_DSA"] = "1"
def process_func(example, tokenizer):
"""数据预处理函数"""
MAX_LENGTH = 1024
# 构建对话模板 - 专门针对角色对话
system_prompt = f"你是一个游戏中的NPC角色。{example['character']}"
instruction = example['instruction']
user_input = example['input']
# 定义输入部分
instruction = tokenizer(
f"<s><|im_start|>system\n{system_prompt}<|im_end|>\n"
f"<|im_start|>user\n{instruction + user_input}<|im_end|>\n"
f"<|im_start|>assistant\n",
add_special_tokens=False
)
# 定义输出部分
response = tokenizer(f"{example['output']}", add_special_tokens=False)
# 合并输入输出
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]
# 标签:只对输出部分计算损失
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
# 截断处理
if len(input_ids) > MAX_LENGTH:
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
def load_model_and_tokenizer(model_path):
"""加载模型和分词器"""
print(f"Loading model from: {model_path}")
# 加载分词器
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# 加载模型
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
return model, tokenizer
def create_lora_config():
"""创建LoRA配置"""
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj", "o_proj"],
inference_mode=False,
r=8, # 增加rank以提高表达能力
lora_alpha=16, # alpha = 2 * r
lora_dropout=0.1,
modules_to_save=["lm_head", "embed_tokens"]
)
return config
def prepare_dataset(data_path, tokenizer):
"""准备数据集"""
print(f"Loading dataset from: {data_path}")
# 加载JSON数据
with open(data_path, 'r', encoding='utf-8') as f:
data = json.load(f)
print(f"Total samples: {len(data)}")
# 转换为Dataset格式
dataset = Dataset.from_list(data)
# 应用预处理函数
def tokenize_function(examples):
return process_func(examples, tokenizer)
tokenized_dataset = dataset.map(
tokenize_function,
remove_columns=dataset.column_names,
batched=False
)
return tokenized_dataset
def train_lora_model(model_path, data_path, output_dir):
"""训练LoRA模型"""
# 1. 加载模型和分词器
model, tokenizer = load_model_and_tokenizer(model_path)
# 2. 创建LoRA配置
lora_config = create_lora_config()
# 3. 应用LoRA
model = get_peft_model(model, lora_config)
# 4. 启用梯度计算
for param in model.parameters():
if param.requires_grad:
param.requires_grad_(True)
model.config.use_cache = False # 关闭缓存以节省显存
# 5. 准备数据集
train_dataset = prepare_dataset(data_path, tokenizer)
# 6. 配置训练参数 - 针对3080显卡优化
training_args = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=1, # 减小batch size
gradient_accumulation_steps=4, # 增加梯度累积
logging_steps=10,
num_train_epochs=3, # 增加训练轮数以充分学习角色特征
save_steps=50,
learning_rate=5e-5, # 稍微提高学习率
warmup_ratio=0.1,
max_grad_norm=1.0,
save_on_each_node=True,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={"use_reentrant": True},
dataloader_pin_memory=False, # 减少内存使用
remove_unused_columns=False,
report_to="none",
#fp16=True, # 使用混合精度训练
save_total_limit=3, # 只保留最新的3个检查点
)
#添加swan监测
swanlab_callback = SwanLabCallback(
project = "QwenLora_Learn",
experiment_name="Qwen3-8B-LoRA-experiment"
)
swanlab.login(api_key="pAxFTROvv3aspmEijax46")
# 7. 创建训练器
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
callbacks=[swanlab_callback] # 传入之前的swanlab_callback
)
# 8. 开始训练
print("Starting training...")
trainer.train()
# 9. 保存最终模型
final_output_dir = os.path.join(output_dir, "final_model")
trainer.save_model(final_output_dir)
tokenizer.save_pretrained(final_output_dir)
print(f"Training completed! Model saved to: {final_output_dir}")
return final_output_dir
def test_trained_model(model_path, lora_path):
"""测试训练后的模型"""
print("Testing trained model...")
# 加载基础模型
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
# 加载LoRA权重
model = PeftModel.from_pretrained(model, lora_path)
# 测试对话
test_cases = [
{
"system": "你是克莱恩,一位神秘学专家和侦探。",
"user": "请告诉我一些关于神秘学的知识。"
},
{
"system": "你是阿兹克,经验丰富的神秘学导师。",
"user": "学生遇到了危险,你会给出什么建议?"
},
{
"system": "你是塔利姆,一个有礼貌的普通人,遇到了困难。",
"user": "你最近怎么样?"
}
]
for i, case in enumerate(test_cases):
messages = [
{"role": "system", "content": case["system"]},
{"role": "user", "content": case["user"]}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True,
enable_thinking=False
).to('cuda')
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.softmax(logits, dim=-1)
# 检查非法值
if torch.isnan(probs).any():
print("概率张量包含NaN")
if torch.isinf(probs).any():
print("概率张量包含Inf")
if (probs < 0).any():
print("概率张量包含负数!")
outputs = model.generate(
**inputs,
max_new_tokens=200,
do_sample=True,
temperature=0.7,
top_p=0.8,
pad_token_id=tokenizer.eos_token_id
)
response = outputs[0][inputs['input_ids'].shape[1]:]
decoded_response = tokenizer.decode(response, skip_special_tokens=True)
print(f"\n--- 测试用例 {i+1} ---")
print(f"系统提示: {case['system']}")
print(f"用户输入: {case['user']}")
print(f"模型回复: {decoded_response}")
def main():
# 配置路径
model_path = '/mnt/g/Project02/AITrain/Qwen/Qwen3-8B-AWQ' # 基础模型路径
data_path = './npc_dialogue_dataset.json' # 训练数据路径
output_dir = './output/NPC_Dialogue_LoRA' # 输出目录
#####test
final_model_path = os.path.join(output_dir, "final_model")
test_trained_model(model_path, final_model_path)
# 确保数据文件存在
if not os.path.exists(data_path):
print(f"数据文件不存在: {data_path}")
print("请先运行 prepare_dialogue_data.py 生成训练数据")
return
try:
# 训练模型
final_model_path = train_lora_model(model_path, data_path, output_dir)
# 测试模型
test_trained_model(model_path, final_model_path)
except Exception as e:
print(f"训练过程中出现错误: {e}")
import traceback
traceback.print_exc()
if __name__ == '__main__':
main()

View File

@ -1,53 +0,0 @@
import os
from vllm import LLM
from vllm import SamplingParams
from transformers import AutoTokenizer
os.environ['VLLM_USE_MODELSCOPE'] = 'True'
def get_completion(prompts, model, tokenizer=None, temperature = 1.0, top_p = 0.95, top_k=20, min_p=0,
max_tokens = 2048, max_model_len = 4096):
stop_token_ids = [151645, 151643]
# 创建采样参数。temperature 控制生成文本的多样性,
# top_p 控制核心采样的概率,
# top_k 通过限制候选词的数量来控制生成文本的质量和多样性,
# min_p 通过设置概率阈值来筛选候选词,从而在保证文本质量的同时增加多样性
sampling_params = SamplingParams(temperature=temperature, top_p=top_p,
top_k=top_k, min_p=min_p, max_tokens=max_tokens, stop_token_ids=stop_token_ids)
#初始化vllm推理引擎
llm = LLM(
model=model,
tokenizer=tokenizer,
max_model_len=max_model_len,
gpu_memory_utilization=0.85,
trust_remote_code=True,
enforce_eager=True,
swap_space=2 # 使用2GB交换空间
)
outputs = llm.generate(prompts, sampling_params)
return outputs
if __name__ == '__main__':
model = '/home/tong/AIProject/Qwen/Qwen/Qwen3-0.6B'
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False) #加载分词器
prompt = "给我一个关于大模型的简短介绍"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False)
outputs = get_completion(text, model, tokenizer=None, temperature=0.6, top_p = 0.95, top_k=20, min_p=0) # 对于思考模式官方建议使用以下参数temperature = 0.6TopP = 0.95TopK = 20MinP = 0。
# 输出是一个包含 prompt、生成文本和其他信息的 RequestOutput 对象列表。
# 打印输出。
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, \nResponse: {generated_text!r}")

View File

@ -13,4 +13,10 @@ conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=
5.下载deepseek模型 5.下载deepseek模型
pip install modelscope pip install modelscope
pip install vllm pip install vllm
pip install swanlab==0.5.7
pip install accelerate==1.6.0
pip install datasets==3.5.1
pip install peft==0.15.2
pip install autoawq
python model_download.py python model_download.py