删除多余代码

This commit is contained in:
997146918 2025-08-23 17:27:01 +08:00
parent 6e2b99438b
commit 5ba1d0dbdd
4 changed files with 7 additions and 566 deletions

View File

@ -455,177 +455,7 @@ class DualAIDialogueEngine:
print(f"⚠ 对话评分失败: {e}")
return 0.0, "{}", f"评分失败: {str(e)}"
def generate_character_prompt(self, character_name: str, context_info: List[Dict], dialogue_history: List[DialogueTurn],
history_context_count: int = 3, context_info_count: int = 2) -> str:
"""为角色生成对话提示
Args:
character_name: 角色名称
context_info: 相关上下文信息
dialogue_history: 对话历史
history_context_count: 使用的历史对话轮数默认3轮
context_info_count: 使用的上下文信息数量默认2个
"""
char_data = self.kb.character_data.get(character_name, {})
# 基础角色设定
prompt_parts = []
prompt_parts.append(f"你是{character_name},具有以下设定:")
if char_data.get('personality', {}).get('core_traits'):
traits = ", ".join(char_data['personality']['core_traits'])
prompt_parts.append(f"性格特点:{traits}")
if char_data.get('speech_patterns', {}).get('sample_phrases'):
phrases = char_data['speech_patterns']['sample_phrases'][:3]
prompt_parts.append(f"说话风格示例:{'; '.join(phrases)}")
# 当前情境
if char_data.get('current_situation'):
situation = char_data['current_situation']
prompt_parts.append(f"当前状态:{situation.get('current_mood', '')}")
# 相关世界观信息(可控制数量)
if context_info:
prompt_parts.append("相关背景信息:")
for info in context_info[:context_info_count]:
content = info['content'][:200] + "..." if len(info['content']) > 200 else info['content']
prompt_parts.append(f"- {content}")
# 对话历史(可控制数量)
if dialogue_history:
prompt_parts.append("最近的对话:")
# 使用参数控制历史对话轮数
history_to_use = dialogue_history[-history_context_count:] if history_context_count > 0 else []
for turn in history_to_use:
prompt_parts.append(f"{turn.speaker}: {turn.content}")
prompt_parts.append("\n请根据角色设定和上下文生成符合角色特点的自然对话。回复应该在50-150字之间。")
return "\n".join(prompt_parts)
def generate_dialogue(self, session_id: str, current_speaker: str, topic_hint: str = "",
history_context_count: int = 3, context_info_count: int = 2) -> Tuple[str, List[str]]:
"""生成角色对话
Args:
session_id: 会话ID
current_speaker: 当前说话者
topic_hint: 话题提示
history_context_count: 使用的历史对话轮数默认3轮
context_info_count: 使用的上下文信息数量默认2个
"""
# 获取对话历史
dialogue_history = self.conv_mgr.get_conversation_history(session_id)
# 构建搜索查询
if dialogue_history:
# 基于最近的对话内容(可控制数量)
recent_turns = dialogue_history[-history_context_count:] if history_context_count > 0 else []
recent_content = " ".join([turn.content for turn in recent_turns])
search_query = recent_content + " " + topic_hint
else:
# 首次对话
search_query = f"{current_speaker} {topic_hint} introduction greeting"
# 搜索相关上下文
context_info = self.kb.search_relevant_context(search_query, current_speaker, context_info_count)
# 生成提示(使用参数控制上下文数量)
prompt = self.generate_character_prompt(
current_speaker,
context_info,
dialogue_history,
history_context_count,
context_info_count
)
# 生成对话 - 使用双模型系统
try:
# 检查是否为双模型对话系统
if hasattr(self.llm_generator, 'generate_dual_character_dialogue'):
# 使用双模型系统
response = self.llm_generator.generate_dual_character_dialogue(
current_speaker,
prompt,
topic_hint or "请继续对话",
temperature=0.8,
max_new_tokens=150
)
else:
# 兼容旧的单模型系统
response = self.llm_generator.generate_character_dialogue(
current_speaker,
prompt,
topic_hint or "请继续对话",
temperature=0.8,
max_new_tokens=150
)
# 记录使用的上下文
context_used = [f"{info['section']}.{info['subsection']}" for info in context_info[:context_info_count]]
avg_relevance = sum(info['relevance_score'] for info in context_info[:context_info_count]) / len(context_info[:context_info_count]) if context_info else 0.0
# 对对话进行评分
if self.enable_scoring:
dialogue_score, score_details, score_feedback = self.score_dialogue_turn(response, current_speaker, dialogue_history)
print(f" [评分: {dialogue_score:.2f}] {score_feedback}")
else:
dialogue_score, score_details, score_feedback = 0.0, "{}", ""
# 保存对话轮次(包含评分信息)
self.conv_mgr.add_dialogue_turn(
session_id, current_speaker, response, context_used, avg_relevance,
dialogue_score, score_details, score_feedback
)
return response, context_used
except Exception as e:
print(f"✗ 对话生成失败: {e}")
return f"[{current_speaker}暂时无法回应]", []
def run_conversation_turn(self, session_id: str, characters: List[str], turns_count: int = 1, topic: str = "",
history_context_count: int = 3, context_info_count: int = 2):
"""运行对话轮次
Args:
session_id: 会话ID
characters: 角色列表
turns_count: 对话轮数
topic: 对话主题
history_context_count: 使用的历史对话轮数默认3轮
context_info_count: 使用的上下文信息数量默认2个
"""
results = []
print(f" [上下文设置: 历史{history_context_count}轮, 信息{context_info_count}个]")
for i in range(turns_count):
for char in characters:
response, context_used = self.generate_dialogue(
session_id,
char,
topic,
history_context_count,
context_info_count
)
results.append({
"speaker": char,
"content": response,
"context_used": context_used,
"turn": i + 1,
"context_settings": {
"history_count": history_context_count,
"context_info_count": context_info_count
}
})
print(f"{char}: {response}")
# if context_used:
# print(f" [使用上下文: {', '.join(context_used)}]")
print()
return results
def run_dual_model_conversation(self, session_id: str, topic: str = "", turns: int = 4,
history_context_count: int = 3, context_info_count: int = 2):
@ -713,232 +543,3 @@ class DualAIDialogueEngine:
return conversation_results
# def main():
# """主函数 - 演示系统使用"""
# print("=== RAG增强双AI角色对话系统 ===")
# # 设置路径
# knowledge_dir = "./knowledge_base" # 包含世界观和角色文档的目录
# # 检查必要文件
# required_dirs = [knowledge_dir]
# for dir_path in required_dirs:
# if not os.path.exists(dir_path):
# print(f"✗ 目录不存在: {dir_path}")
# print("请确保以下文件存在:")
# print("- ./knowledge_base/worldview_template_coc.json")
# print("- ./knowledge_base/character_template_detective.json")
# print("- ./knowledge_base/character_template_professor.json")
# return
# try:
# # 初始化系统组件
# print("\n初始化系统...")
# kb = RAGKnowledgeBase(knowledge_dir)
# conv_mgr = ConversationManager()
# # 这里需要你的LLM生成器使用新的双模型对话系统
# from npc_dialogue_generator import DualModelDialogueGenerator
# base_model_path = '/mnt/g/Project02/AITrain/Qwen/Qwen3-4B' # 根据你的路径调整
# lora_model_path = './output/NPC_Dialogue_LoRA/final_model'
# if not os.path.exists(lora_model_path):
# lora_model_path = None
# # 创建双模型对话生成器
# if hasattr(kb, 'character_data') and len(kb.character_data) >= 2:
# print("✓ 使用knowledge_base角色数据创建双模型对话系统")
# # 获取前两个角色
# character_names = list(kb.character_data.keys())[:2]
# char1_name = character_names[0]
# char2_name = character_names[1]
# # 配置两个角色的模型
# character1_config = {
# "name": char1_name,
# "lora_path": lora_model_path, # 可以为每个角色设置不同的LoRA
# "character_data": kb.character_data[char1_name]
# }
# character2_config = {
# "name": char2_name,
# "lora_path": lora_model_path, # 可以为每个角色设置不同的LoRA
# "character_data": kb.character_data[char2_name]
# }
# llm_generator = DualModelDialogueGenerator(
# base_model_path,
# character1_config,
# character2_config
# )
# else:
# print("⚠ 角色数据不足,无法创建双模型对话系统")
# return
# # 创建对话引擎
# dialogue_engine = DualAIDialogueEngine(kb, conv_mgr, llm_generator)
# print("✓ 系统初始化完成")
# # 交互式菜单
# while True:
# print("\n" + "="*50)
# print("双AI角色对话系统")
# print("1. 创建新对话")
# print("2. 继续已有对话")
# print("3. 查看对话历史")
# print("4. 列出所有会话")
# print("0. 退出")
# print("="*50)
# choice = input("请选择操作: ").strip()
# if choice == '0':
# break
# elif choice == '1':
# # 创建新对话
# print(f"可用角色: {list(kb.character_data.keys())}")
# characters = input("请输入两个角色名称(用空格分隔): ").strip().split()
# if len(characters) != 2:
# print("❌ 请输入正好两个角色名称")
# continue
# worldview = kb.worldview_data.get('worldview_name', '未知世界观') if kb.worldview_data else '未知世界观'
# session_id = conv_mgr.create_session(characters, worldview)
# topic = input("请输入对话主题(可选): ").strip()
# turns = int(input("请输入对话轮次数量默认2: ").strip() or "2")
# # 历史上下文控制选项
# print("\n历史上下文设置:")
# history_count = input("使用历史对话轮数默认30表示不使用: ").strip()
# history_count = int(history_count) if history_count.isdigit() else 3
# context_info_count = input("使用上下文信息数量默认2: ").strip()
# context_info_count = int(context_info_count) if context_info_count.isdigit() else 2
# print(f"\n开始对话 - 会话ID: {session_id}")
# print(f"上下文设置: 历史{history_count}轮, 信息{context_info_count}个")
# # 询问是否使用双模型对话
# use_dual_model = input("是否使用双模型对话系统?(y/n默认y): ").strip().lower()
# if use_dual_model != 'n':
# print("使用双模型对话系统...")
# dialogue_engine.run_dual_model_conversation(session_id, topic, turns, history_count, context_info_count)
# else:
# print("使用传统对话系统...")
# dialogue_engine.run_conversation_turn(session_id, characters, turns, topic, history_count, context_info_count)
# elif choice == '2':
# # 继续已有对话
# sessions = conv_mgr.list_sessions()
# if not sessions:
# print("❌ 没有已有对话")
# continue
# print("已有会话:")
# for i, session in enumerate(sessions[:5]):
# chars = ", ".join(session['characters'])
# print(f"{i+1}. {session['session_id'][:8]}... ({chars}) - {session['last_update'][:16]}")
# try:
# idx = int(input("请选择会话编号: ").strip()) - 1
# if 0 <= idx < len(sessions):
# session = sessions[idx]
# session_id = session['session_id']
# characters = session['characters']
# # 显示最近的对话
# history = conv_mgr.get_conversation_history(session_id, 4)
# if history:
# print("\n最近的对话:")
# for turn in history:
# print(f"{turn.speaker}: {turn.content}")
# topic = input("请输入对话主题(可选): ").strip()
# turns = int(input("请输入对话轮次数量默认1: ").strip() or "1")
# # 历史上下文控制选项
# print("\n历史上下文设置:")
# history_count = input("使用历史对话轮数默认30表示不使用: ").strip()
# history_count = int(history_count) if history_count.isdigit() else 3
# context_info_count = input("使用上下文信息数量默认2: ").strip()
# context_info_count = int(context_info_count) if context_info_count.isdigit() else 2
# print(f"\n继续对话 - 会话ID: {session_id}")
# print(f"上下文设置: 历史{history_count}轮, 信息{context_info_count}个")
# # 询问是否使用双模型对话
# use_dual_model = input("是否使用双模型对话系统?(y/n默认y): ").strip().lower()
# if use_dual_model != 'n':
# print("使用双模型对话系统...")
# dialogue_engine.run_dual_model_conversation(session_id, topic, turns, history_count, context_info_count)
# else:
# print("使用传统对话系统...")
# dialogue_engine.run_conversation_turn(session_id, characters, turns, topic, history_count, context_info_count)
# else:
# print("❌ 无效的会话编号")
# except ValueError:
# print("❌ 请输入有效的数字")
# elif choice == '3':
# # 查看对话历史
# session_id = input("请输入会话ID前8位即可: ").strip()
# # 查找匹配的会话
# sessions = conv_mgr.list_sessions()
# matching_session = None
# for session in sessions:
# if session['session_id'].startswith(session_id):
# matching_session = session
# break
# if matching_session:
# full_session_id = matching_session['session_id']
# history = conv_mgr.get_conversation_history(full_session_id, 20)
# if history:
# print(f"\n对话历史 - {full_session_id}")
# print(f"角色: {', '.join(matching_session['characters'])}")
# print(f"世界观: {matching_session['worldview']}")
# print("-" * 50)
# for turn in history:
# print(f"[{turn.timestamp[:16]}] {turn.speaker}:")
# print(f" {turn.content}")
# if turn.context_used:
# print(f" 使用上下文: {', '.join(turn.context_used)}")
# print()
# else:
# print("该会话暂无对话历史")
# else:
# print("❌ 未找到匹配的会话")
# elif choice == '4':
# # 列出所有会话
# sessions = conv_mgr.list_sessions()
# if sessions:
# print(f"\n共有 {len(sessions)} 个对话会话:")
# for session in sessions:
# chars = ", ".join(session['characters'])
# print(f"ID: {session['session_id']}")
# print(f" 角色: {chars}")
# print(f" 世界观: {session['worldview']}")
# print(f" 最后更新: {session['last_update']}")
# print()
# else:
# print("暂无对话会话")
# else:
# print("❌ 无效选择")
# except Exception as e:
# print(f"✗ 系统运行出错: {e}")
# import traceback
# traceback.print_exc()
# if __name__ == '__main__':
# main()

View File

@ -121,7 +121,7 @@ def show_character_info():
except Exception as e:
print(f"✗ 读取角色文件失败: {char_file} - {e}")
def run_dialogue_system():
def run_dialogue_system(enableScore: bool):
"""运行双AI对话系统"""
print("\n" + "="*60)
print("启动双AI角色对话系统")
@ -191,7 +191,7 @@ def run_dialogue_system():
kb,
conv_mgr,
dual_generator,
enable_scoring=True,
enable_scoring=enableScore,
base_model_path=base_model_path
)
@ -260,68 +260,6 @@ def run_dialogue_system():
import traceback
traceback.print_exc()
def create_demo_scenario():
"""创建演示场景"""
print("\n创建演示对话场景...")
try:
from dual_ai_dialogue_system import RAGKnowledgeBase, ConversationManager, DualAIDialogueEngine
from npc_dialogue_generator import NPCDialogueGenerator
# 初始化组件
kb = RAGKnowledgeBase("./knowledge_base")
conv_mgr = ConversationManager("./conversation_data/demo_conversations.db")
# 检查模型路径
base_model_path = '/mnt/e/AI/Project02/AITrain/Qwen/Qwen3-4B'
lora_model_path = './output/NPC_Dialogue_LoRA/final_model'
if not os.path.exists(base_model_path):
print(f"✗ 基础模型路径不存在: {base_model_path}")
print("请修改 main_controller.py 中的模型路径")
return
if not os.path.exists(lora_model_path):
lora_model_path = None
print("⚠ LoRA模型不存在使用基础模型")
llm_generator = NPCDialogueGenerator(base_model_path, lora_model_path, kb.character_data)
dialogue_engine = DualAIDialogueEngine(kb, conv_mgr, llm_generator)
# 创建演示对话
characters = ["维多利亚·布莱克伍德", "阿奇博尔德·韦恩"]
worldview = "克苏鲁的呼唤"
session_id = conv_mgr.create_session(characters, worldview)
print(f"✓ 创建演示会话: {session_id}")
# 运行几轮对话
topic = "最近发生的神秘事件"
print(f"\n开始演示对话 - 主题: {topic}")
print("-" * 40)
# 演示不同的历史上下文设置
# print("演示1: 使用默认上下文设置历史3轮信息2个")
# dialogue_engine.run_conversation_turn(session_id, characters, 6, topic)
session_id = conv_mgr.create_session(characters, worldview)
print(f"✓ 创建演示会话: {session_id}")
print("\n演示3: 使用最少历史上下文历史1轮信息1个")
dialogue_engine.run_conversation_turn(session_id, characters, 6, topic, 1, 10)
session_id = conv_mgr.create_session(characters, worldview)
print(f"✓ 创建演示会话: {session_id}")
print("\n演示2: 使用更多历史上下文历史10轮信息10个")
dialogue_engine.run_conversation_turn(session_id, characters, 6, topic, 5, 10)
print(f"\n✓ 演示完成会话ID: {session_id}")
print("你可以通过主对话系统继续这个对话")
except Exception as e:
print(f"✗ 演示场景创建失败: {e}")
import traceback
traceback.print_exc()
def analyze_model_performance():
"""分析模型性能"""
@ -1333,8 +1271,8 @@ def main():
print("主菜单 - 请选择操作:")
print("1. 处理PDF世界观文档 (转换为RAG格式)")
print("2. 查看角色设定信息")
print("3. 启动双AI对话系统 (支持双模型对话)")
print("4. 创建演示对话场景")
print("3. 启动双AI对话系统 (开启ai打分)")
print("4. 启动双AI对话系统 (关闭ai打分)")
print("5. 系统状态检查")
print("6. 查看对话评分统计")
print("7. 模型性能分析与优化")
@ -1357,10 +1295,10 @@ def main():
show_character_info()
elif choice == '3':
run_dialogue_system()
run_dialogue_system(enableScore = True)
elif choice == '4':
create_demo_scenario()
run_dialogue_system(enableScore = False)
elif choice == '5':
show_system_status()

View File

@ -471,101 +471,3 @@ class DualModelDialogueGenerator:
"""列出两个角色名称"""
return [self.character1_config['name'], self.character2_config['name']]
# def main():
# """测试对话生成器"""
# # 配置路径
# base_model_path = '/mnt/g/Project02/AITrain/Qwen/Qwen3-8B-AWQ'
# lora_model_path = './output/NPC_Dialogue_LoRA/final_model' # 如果没有训练LoRA设为None
# # 检查LoRA模型是否存在
# if not os.path.exists(lora_model_path):
# print("LoRA模型不存在使用基础模型")
# lora_model_path = None
# # 创建对话生成器
# generator = NPCDialogueGenerator(base_model_path, lora_model_path)
# print("=== 游戏NPC角色对话生成器 ===")
# print(f"可用角色:{', '.join(generator.list_available_characters())}")
# # 测试单个角色对话生成
# print("\n=== 单角色对话测试 ===")
# test_scenarios = [
# {
# "character": "克莱恩",
# "context": "玩家向你咨询神秘学知识",
# "input": "请告诉我一些关于灵界的注意事项。"
# },
# {
# "character": "阿兹克",
# "context": "学生遇到了修炼瓶颈",
# "input": "导师,我在修炼中遇到了困难。"
# },
# {
# "character": "塔利姆",
# "context": "在俱乐部偶遇老朋友",
# "input": "好久不见,最近怎么样?"
# }
# ]
# for scenario in test_scenarios:
# print(f"\n--- {scenario['character']} ---")
# print(f"情境:{scenario['context']}")
# print(f"输入:{scenario['input']}")
# dialogue = generator.generate_character_dialogue(
# scenario["character"],
# scenario["context"],
# scenario["input"]
# )
# print(f"回复:{dialogue}")
# # 测试角色间对话
# print("\n=== 角色间对话测试 ===")
# conversation = generator.generate_dialogue_conversation(
# "克莱恩", "塔利姆", "最近遇到的神秘事件", turns=4
# )
# for turn in conversation:
# print(f"{turn['speaker']}{turn['dialogue']}")
# # 交互式对话模式
# print("\n=== 交互式对话模式 ===")
# print("输入格式:角色名 上下文 用户输入")
# print("例如:克莱恩 在俱乐部 请给我一些建议")
# print("输入'quit'退出")
# while True:
# try:
# user_command = input("\n请输入指令: ").strip()
# if user_command.lower() == 'quit':
# break
# parts = user_command.split(' ', 2)
# if len(parts) < 2:
# print("格式错误,请使用:角色名 上下文 [用户输入]")
# continue
# character = parts[0]
# context = parts[1]
# user_input = parts[2] if len(parts) > 2 else ""
# if character not in generator.list_available_characters():
# print(f"未知角色:{character}")
# print(f"可用角色:{', '.join(generator.list_available_characters())}")
# continue
# dialogue = generator.generate_character_dialogue(
# character, context, user_input
# )
# print(f"\n{character}{dialogue}")
# except KeyboardInterrupt:
# break
# except Exception as e:
# print(f"生成对话时出错:{e}")
# print("\n对话生成器已退出")
# if __name__ == '__main__':
# main()