增加ai的输出随机性,添加输出内容格式错误时,重新生成的机制

This commit is contained in:
997146918 2025-06-26 18:48:46 +08:00
parent 1cb89e167c
commit 609b4cd072

View File

@ -2,6 +2,7 @@ import argparse
import asyncio
import json
import logging
import random
import re
import threading
import time
@ -23,6 +24,9 @@ parser.add_argument('--model', type=str, default='deepseek-r1:1.5b',
args = parser.parse_args()
logger.log(logging.INFO, f"使用的模型是 {args.model}")
maxAIRegerateCount = 5
lastPrompt = ""
#初始化ollama客户端
ollamaClient = Client(host='http://localhost:11434')
@ -34,6 +38,7 @@ async def heartbeat(websocket: WebSocket):
except ConnectionClosed:
break # 连接已关闭时退出循环
#statuscode -1 服务器运行错误 0 心跳标志 1 正常 2 输出异常
async def senddata(websocket: WebSocket, statusCode: int, messages: List[str]):
# 将AI响应发送回UE5
if websocket.client_state == WebSocketState.CONNECTED:
@ -53,7 +58,7 @@ async def websocket_endpoint(websocket: WebSocket, client_id: str):
asyncio.create_task(heartbeat(websocket))
try:
while True:
logger.log(logging.INFO, "websocket_endpoint ")
# 接收UE5发来的消息
data = await websocket.receive_text()
logger.log(logging.INFO, f"收到UE5消息 [{client_id}]: {data}")
@ -77,6 +82,7 @@ async def websocket_endpoint(websocket: WebSocket, client_id: str):
def process_prompt(promptFromUE: str) -> Tuple[bool, str]:
try:
lastPrompt = promptFromUE
data = json.loads(promptFromUE)
# 提取数据
@ -86,8 +92,10 @@ def process_prompt(promptFromUE: str) -> Tuple[bool, str]:
assert len(persons) == 2
for person in persons:
print(f" 姓名: {person['name']}, 职业: {person['job']}")
#动态标识吗 防止重复输入导致的结果重复
dynamic_token = str(int(time.time() % 1000))
prompt = f"""
[动态标识码:{dynamic_token}]
你是一个游戏NPC对话生成器请严格按以下要求生成两个路人NPC{persons[0]["name"]}{persons[1]["name"]}的日常对话
1. 生成2轮完整对话每轮包含双方各一次发言共4句
2. 对话场景{dialog_scene}
@ -99,14 +107,13 @@ def process_prompt(promptFromUE: str) -> Tuple[bool, str]:
* 避免任务指引或玩家交互内容
* 结尾保持对话未完成感
5. 输出格式
必须确保输出内容的第一行是三个连字符`---`最后一行也是三个连字符`---`
中间内容严格按以下顺序排列禁止添加任何额外说明或换行
---
<format>
{persons[0]["name"]}[第一轮发言]
{persons[1]["name"]}[第一轮回应]
{persons[0]["name"]}[第二轮发言]
{persons[1]["name"]}[第二轮回应]
---
</format>
6.重要若未按此格式输出请重新生成直至完全符合
"""
return True, prompt
@ -144,34 +151,63 @@ async def generateAIChat(prompt: str, websocket: WebSocket):
stream = False,
messages = receivemessage,
options={
"temperature": 0.8,
"temperature": random.uniform(1.0, 1.5),
"repeat_penalty": 1.2, # 抑制重复
"top_p": 0.9,
"top_p": random.uniform(0.7, 0.95),
"num_ctx": 4096, # 上下文长度
"seed": 42
"seed": int(time.time() * 1000) % 1000000
}
)
except ResponseError as e:
if e.status_code == 503:
print("🔄 服务不可用5秒后重试...")
return await senddata(websocket, -1, messages={"ollama 服务不可用"})
return await senddata(websocket, -1, messages=["ollama 服务不可用"])
except Exception as e:
print(f"🔥 未预料错误: {str(e)}")
return await senddata(websocket, -1, messages={"未预料错误"})
return await senddata(websocket, -1, messages=["未预料错误"])
logger.log(logging.INFO, "接口调用耗时 :" + str(time.time() - starttime))
logger.log(logging.INFO, "AI生成" + response['message']['content'])
#处理ai输出内容
think_remove_text = re.sub(r'<think>.*?</think>', '', response['message']['content'], flags=re.DOTALL)
pattern = r".*---(.*?)---" # .* 吞掉前面所有字符,定位最后一组
pattern = r".*<format>(.*?)</format>" # .* 吞掉前面所有字符,定位最后一组
match = re.search(pattern, think_remove_text, re.DOTALL)
if not match:
await senddata(websocket, -1, messages={"ai生成格式不正确"})
if await reGenerateAIChat(prompt, websocket):
pass
else:
logger.log(logging.ERROR, "请更换prompt或者升级模型大小")
await senddata(websocket, -1, messages=["请更换prompt或者升级模型大小"])
else:
core_dialog = match.group(1).strip()
logger.log(logging.INFO, "AI内容处理\n" + core_dialog)
await senddata(websocket, 1, core_dialog.split('\n'))
dialog_lines = core_dialog.split('\n')
if len(dialog_lines) != 4:
if await reGenerateAIChat(prompt, websocket):
pass
else:
logger.log(logging.ERROR, "请更换prompt或者升级模型大小")
await senddata(websocket, -1, messages=["请更换prompt或者升级模型大小"])
else:
logger.log(logging.INFO, "AI的输出正确\n" + core_dialog)
global regenerateCount
regenerateCount = 0
await senddata(websocket, 1, dialog_lines)
regenerateCount = 1
async def reGenerateAIChat(prompt: str, websocket: WebSocket):
global regenerateCount
if regenerateCount < maxAIRegerateCount:
regenerateCount += 1
logger.log(logging.ERROR, f"AI输出格式不正确重新进行生成 {regenerateCount}/{maxAIRegerateCount}")
await senddata(websocket, 2, messages=["ai生成格式不正确 重新进行生成"])
await asyncio.sleep(0)
await generateAIChat(prompt, websocket)
return True
else:
regenerateCount = 0
logger.log(logging.ERROR, "输出不正确 超过最大生成次数")
return False
if __name__ == "__main__":
# 创建并启动服务器线程