diff --git a/AIGC/main.py b/AIGC/main.py
index b13fbe6..39dedab 100644
--- a/AIGC/main.py
+++ b/AIGC/main.py
@@ -2,6 +2,7 @@ import argparse
import asyncio
import json
import logging
+import random
import re
import threading
import time
@@ -23,6 +24,9 @@ parser.add_argument('--model', type=str, default='deepseek-r1:1.5b',
args = parser.parse_args()
logger.log(logging.INFO, f"使用的模型是 {args.model}")
+maxAIRegerateCount = 5
+lastPrompt = ""
+
#初始化ollama客户端
ollamaClient = Client(host='http://localhost:11434')
@@ -34,6 +38,7 @@ async def heartbeat(websocket: WebSocket):
except ConnectionClosed:
break # 连接已关闭时退出循环
+#statuscode -1 服务器运行错误 0 心跳标志 1 正常 2 输出异常
async def senddata(websocket: WebSocket, statusCode: int, messages: List[str]):
# 将AI响应发送回UE5
if websocket.client_state == WebSocketState.CONNECTED:
@@ -53,7 +58,7 @@ async def websocket_endpoint(websocket: WebSocket, client_id: str):
asyncio.create_task(heartbeat(websocket))
try:
while True:
- logger.log(logging.INFO, "websocket_endpoint ")
+
# 接收UE5发来的消息
data = await websocket.receive_text()
logger.log(logging.INFO, f"收到UE5消息 [{client_id}]: {data}")
@@ -77,6 +82,7 @@ async def websocket_endpoint(websocket: WebSocket, client_id: str):
def process_prompt(promptFromUE: str) -> Tuple[bool, str]:
try:
+ lastPrompt = promptFromUE
data = json.loads(promptFromUE)
# 提取数据
@@ -86,8 +92,10 @@ def process_prompt(promptFromUE: str) -> Tuple[bool, str]:
assert len(persons) == 2
for person in persons:
print(f" 姓名: {person['name']}, 职业: {person['job']}")
-
+ #动态标识吗 防止重复输入导致的结果重复
+ dynamic_token = str(int(time.time() % 1000))
prompt = f"""
+ [动态标识码:{dynamic_token}]
你是一个游戏NPC对话生成器。请严格按以下要求生成两个路人NPC({persons[0]["name"]}和{persons[1]["name"]})的日常对话:
1. 生成【2轮完整对话】,每轮包含双方各一次发言(共4句)
2. 对话场景:{dialog_scene}
@@ -99,14 +107,13 @@ def process_prompt(promptFromUE: str) -> Tuple[bool, str]:
* 避免任务指引或玩家交互内容
* 结尾保持对话未完成感
5. 输出格式:
- 必须确保输出内容的第一行是三个连字符`---`,最后一行也是三个连字符`---`
- 中间内容严格按以下顺序排列,禁止添加任何额外说明或换行:
- ---
+
{persons[0]["name"]}:[第一轮发言]
{persons[1]["name"]}:[第一轮回应]
{persons[0]["name"]}:[第二轮发言]
{persons[1]["name"]}:[第二轮回应]
- ---
+
+
6.重要!若未按此格式输出,请重新生成直至完全符合
"""
return True, prompt
@@ -144,34 +151,63 @@ async def generateAIChat(prompt: str, websocket: WebSocket):
stream = False,
messages = receivemessage,
options={
- "temperature": 0.8,
+ "temperature": random.uniform(1.0, 1.5),
"repeat_penalty": 1.2, # 抑制重复
- "top_p": 0.9,
+ "top_p": random.uniform(0.7, 0.95),
"num_ctx": 4096, # 上下文长度
- "seed": 42
+ "seed": int(time.time() * 1000) % 1000000
}
)
except ResponseError as e:
if e.status_code == 503:
print("🔄 服务不可用,5秒后重试...")
- return await senddata(websocket, -1, messages={"ollama 服务不可用"})
+ return await senddata(websocket, -1, messages=["ollama 服务不可用"])
except Exception as e:
print(f"🔥 未预料错误: {str(e)}")
- return await senddata(websocket, -1, messages={"未预料错误"})
+ return await senddata(websocket, -1, messages=["未预料错误"])
logger.log(logging.INFO, "接口调用耗时 :" + str(time.time() - starttime))
logger.log(logging.INFO, "AI生成" + response['message']['content'])
#处理ai输出内容
think_remove_text = re.sub(r'.*?', '', response['message']['content'], flags=re.DOTALL)
- pattern = r".*---(.*?)---" # .* 吞掉前面所有字符,定位最后一组
+ pattern = r".*(.*?)" # .* 吞掉前面所有字符,定位最后一组
match = re.search(pattern, think_remove_text, re.DOTALL)
if not match:
- await senddata(websocket, -1, messages={"ai生成格式不正确"})
+ if await reGenerateAIChat(prompt, websocket):
+ pass
+ else:
+ logger.log(logging.ERROR, "请更换prompt,或者升级模型大小")
+ await senddata(websocket, -1, messages=["请更换prompt,或者升级模型大小"])
+
else:
core_dialog = match.group(1).strip()
- logger.log(logging.INFO, "AI内容处理:\n" + core_dialog)
- await senddata(websocket, 1, core_dialog.split('\n'))
-
+ dialog_lines = core_dialog.split('\n')
+ if len(dialog_lines) != 4:
+ if await reGenerateAIChat(prompt, websocket):
+ pass
+ else:
+ logger.log(logging.ERROR, "请更换prompt,或者升级模型大小")
+ await senddata(websocket, -1, messages=["请更换prompt,或者升级模型大小"])
+ else:
+ logger.log(logging.INFO, "AI的输出正确:\n" + core_dialog)
+ global regenerateCount
+ regenerateCount = 0
+ await senddata(websocket, 1, dialog_lines)
+
+regenerateCount = 1
+async def reGenerateAIChat(prompt: str, websocket: WebSocket):
+ global regenerateCount
+ if regenerateCount < maxAIRegerateCount:
+ regenerateCount += 1
+ logger.log(logging.ERROR, f"AI输出格式不正确,重新进行生成 {regenerateCount}/{maxAIRegerateCount}")
+ await senddata(websocket, 2, messages=["ai生成格式不正确, 重新进行生成"])
+ await asyncio.sleep(0)
+ await generateAIChat(prompt, websocket)
+ return True
+ else:
+ regenerateCount = 0
+ logger.log(logging.ERROR, "输出不正确 超过最大生成次数")
+ return False
if __name__ == "__main__":
# 创建并启动服务器线程