调整训练参数

This commit is contained in:
997146918 2025-08-11 10:29:12 +08:00
parent 5c27e14038
commit 66dade2f3f

View File

@ -39,7 +39,7 @@ def process_func(example, tokenizer):
instruction = tokenizer(
f"<s><|im_start|>system\n{system_prompt}<|im_end|>\n"
f"<|im_start|>user\n{instruction + user_input}<|im_end|>\n"
f"<|im_start|>assistant\n",
f"<|im_start|>assistant\n<think>\n\n</think>\n\n",
add_special_tokens=False
)
@ -142,12 +142,12 @@ def train_lora_model(model_path, data_path, output_dir):
model.config.use_cache = False # 关闭缓存以节省显存
# 5. 准备数据集
train_dataset = prepare_dataset(data_path, tokenizer)
train_preparedataset = prepare_dataset(data_path, tokenizer)
# 6. 配置训练参数 - 针对3080显卡优化
training_args = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=1, # 减小batch size
per_device_train_batch_size=2, # 减小batch size
gradient_accumulation_steps=4, # 增加梯度累积
logging_steps=10,
num_train_epochs=3, # 增加训练轮数以充分学习角色特征
@ -161,6 +161,7 @@ def train_lora_model(model_path, data_path, output_dir):
dataloader_pin_memory=False, # 减少内存使用
remove_unused_columns=False,
report_to="none",
#bf16=True,
#fp16=True, # 使用混合精度训练
save_total_limit=3, # 只保留最新的3个检查点
)
@ -175,7 +176,7 @@ def train_lora_model(model_path, data_path, output_dir):
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
train_dataset=train_preparedataset,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
callbacks=[swanlab_callback] # 传入之前的swanlab_callback
)
@ -270,13 +271,13 @@ def test_trained_model(model_path, lora_path):
def main():
# 配置路径
model_path = '/mnt/g/Project02/AITrain/Qwen/Qwen3-8B-AWQ' # 基础模型路径
model_path = '/mnt/e/AI/Project02/AITrain/Qwen/Qwen3-8B-AWQ' # 基础模型路径
data_path = './npc_dialogue_dataset.json' # 训练数据路径
output_dir = './output/NPC_Dialogue_LoRA' # 输出目录
#####test
final_model_path = os.path.join(output_dir, "final_model")
test_trained_model(model_path, final_model_path)
# #####test
# final_model_path = os.path.join(output_dir, "final_model")
# test_trained_model(model_path, final_model_path)
# 确保数据文件存在
if not os.path.exists(data_path):
print(f"数据文件不存在: {data_path}")