完善读取本地世界观对话

This commit is contained in:
997146918 2025-08-15 14:42:13 +08:00
parent 18b982fadb
commit 8824d2d25d
3 changed files with 4022 additions and 58 deletions

View File

@ -64,14 +64,39 @@ class RAGKnowledgeBase:
def _load_knowledge_base(self):
"""加载知识库"""
# 加载世界观
worldview_files = [f for f in os.listdir(self.knowledge_dir)
if f.startswith('worldview') and f.endswith('.json')]
if worldview_files:
worldview_path = os.path.join(self.knowledge_dir, worldview_files[0])
with open(worldview_path, 'r', encoding='utf-8') as f:
self.worldview_data = json.load(f)
print(f"✓ 世界观加载成功: {self.worldview_data.get('worldview_name', '未知')}")
# 优先加载RAG知识库作为世界观
rag_worldview_path = "./rag_knowledge/knowledge_base.json"
if os.path.exists(rag_worldview_path):
try:
with open(rag_worldview_path, 'r', encoding='utf-8') as f:
rag_data = json.load(f)
# 从RAG数据中提取世界观信息
self.worldview_data = {
"worldview_name": "克苏鲁神话世界观 (RAG)",
"source": rag_data.get("metadata", {}).get("source_file", "未知"),
"description": f"基于{rag_data.get('metadata', {}).get('source_file', 'PDF文档')}的RAG知识库",
"total_chunks": rag_data.get("metadata", {}).get("total_chunks", 0),
"total_concepts": rag_data.get("metadata", {}).get("total_concepts", 0),
"rag_enabled": True
}
# 保存RAG数据用于检索
self.rag_chunks = rag_data.get("chunks", [])
print(f"✓ RAG世界观加载成功: {self.worldview_data['worldview_name']}")
print(f" - 文档块数: {self.worldview_data['total_chunks']}")
print(f" - 概念数: {self.worldview_data['total_concepts']}")
except Exception as e:
print(f"✗ RAG世界观加载失败: {e}")
self.rag_chunks = []
# 如果没有RAG知识库则加载传统世界观文件
if not hasattr(self, 'rag_chunks') or not self.rag_chunks:
worldview_files = [f for f in os.listdir(self.knowledge_dir)
if f.startswith('worldview') and f.endswith('.json')]
if worldview_files:
worldview_path = os.path.join(self.knowledge_dir, worldview_files[0])
with open(worldview_path, 'r', encoding='utf-8') as f:
self.worldview_data = json.load(f)
print(f"✓ 传统世界观加载成功: {self.worldview_data.get('worldview_name', '未知')}")
# 加载角色数据
character_files = [f for f in os.listdir(self.knowledge_dir)
@ -96,21 +121,38 @@ class RAGKnowledgeBase:
"""构建可检索的文本块"""
self.chunks = []
# 世界观相关文本块
if self.worldview_data:
for section_key, section_data in self.worldview_data.items():
if isinstance(section_data, dict):
for sub_key, sub_data in section_data.items():
if isinstance(sub_data, (str, list)):
content = str(sub_data)
if len(content) > 50: # 只保留有意义的文本
self.chunks.append({
"type": "worldview",
"section": section_key,
"subsection": sub_key,
"content": content,
"metadata": {"source": "worldview"}
})
# 优先使用RAG知识库的文本块
if hasattr(self, 'rag_chunks') and self.rag_chunks:
for rag_chunk in self.rag_chunks:
self.chunks.append({
"type": "worldview_rag",
"section": "rag_knowledge",
"subsection": rag_chunk.get("type", "unknown"),
"content": rag_chunk.get("content", ""),
"metadata": {
"source": "rag_worldview",
"chunk_id": rag_chunk.get("id", ""),
"size": rag_chunk.get("size", 0),
"hash": rag_chunk.get("hash", "")
}
})
print(f"✓ 使用RAG知识库文本块: {len(self.rag_chunks)}")
else:
# 传统世界观相关文本块
if self.worldview_data:
for section_key, section_data in self.worldview_data.items():
if isinstance(section_data, dict):
for sub_key, sub_data in section_data.items():
if isinstance(sub_data, (str, list)):
content = str(sub_data)
if len(content) > 50: # 只保留有意义的文本
self.chunks.append({
"type": "worldview",
"section": section_key,
"subsection": sub_key,
"content": content,
"metadata": {"source": "worldview"}
})
# 角色相关文本块
for char_name, char_data in self.character_data.items():
@ -134,6 +176,18 @@ class RAGKnowledgeBase:
def _build_vector_index(self):
"""构建向量索引"""
try:
# 优先使用RAG知识库的预构建向量索引
rag_vector_path = "./rag_knowledge/vector_index.faiss"
rag_embeddings_path = "./rag_knowledge/embeddings.npy"
if os.path.exists(rag_vector_path) and os.path.exists(rag_embeddings_path):
# 加载预构建的向量索引
self.index = faiss.read_index(rag_vector_path)
self.rag_embeddings = np.load(rag_embeddings_path)
print(f"✓ 使用RAG预构建向量索引: {self.index.ntotal}个向量")
return
# 如果没有预构建的向量索引,则重新构建
texts = [chunk["content"] for chunk in self.chunks]
embeddings = self.embedding_model.encode(texts)
@ -152,14 +206,26 @@ class RAGKnowledgeBase:
# 向量搜索
if EMBEDDING_AVAILABLE and self.embedding_model and self.index:
try:
query_vector = self.embedding_model.encode([query])
distances, indices = self.index.search(query_vector.astype(np.float32), top_k * 2)
for distance, idx in zip(distances[0], indices[0]):
if idx < len(self.chunks):
chunk = self.chunks[idx].copy()
chunk["relevance_score"] = float(1 / (1 + distance))
relevant_chunks.append(chunk)
# 如果使用RAG预构建向量索引直接搜索
if hasattr(self, 'rag_embeddings'):
query_vector = self.embedding_model.encode([query])
distances, indices = self.index.search(query_vector.astype(np.float32), top_k * 2)
for distance, idx in zip(distances[0], indices[0]):
if idx < len(self.chunks):
chunk = self.chunks[idx].copy()
chunk["relevance_score"] = float(1 / (1 + distance))
relevant_chunks.append(chunk)
else:
# 传统向量搜索
query_vector = self.embedding_model.encode([query])
distances, indices = self.index.search(query_vector.astype(np.float32), top_k * 2)
for distance, idx in zip(distances[0], indices[0]):
if idx < len(self.chunks):
chunk = self.chunks[idx].copy()
chunk["relevance_score"] = float(1 / (1 + distance))
relevant_chunks.append(chunk)
except Exception as e:
print(f"向量搜索失败: {e}")
@ -317,8 +383,17 @@ class DualAIDialogueEngine:
self.conv_mgr = conversation_manager
self.llm_generator = llm_generator
def generate_character_prompt(self, character_name: str, context_info: List[Dict], dialogue_history: List[DialogueTurn]) -> str:
"""为角色生成对话提示"""
def generate_character_prompt(self, character_name: str, context_info: List[Dict], dialogue_history: List[DialogueTurn],
history_context_count: int = 3, context_info_count: int = 2) -> str:
"""为角色生成对话提示
Args:
character_name: 角色名称
context_info: 相关上下文信息
dialogue_history: 对话历史
history_context_count: 使用的历史对话轮数默认3轮
context_info_count: 使用的上下文信息数量默认2个
"""
char_data = self.kb.character_data.get(character_name, {})
# 基础角色设定
@ -338,42 +413,60 @@ class DualAIDialogueEngine:
situation = char_data['current_situation']
prompt_parts.append(f"当前状态:{situation.get('current_mood', '')}")
# 相关世界观信息
# 相关世界观信息(可控制数量)
if context_info:
prompt_parts.append("相关背景信息:")
for info in context_info[:2]: # 只使用最相关的2个信息
for info in context_info[:context_info_count]:
content = info['content'][:200] + "..." if len(info['content']) > 200 else info['content']
prompt_parts.append(f"- {content}")
# 对话历史
# 对话历史(可控制数量)
if dialogue_history:
prompt_parts.append("最近的对话:")
for turn in dialogue_history[-3:]: # 只使用最近的3轮对话
# 使用参数控制历史对话轮数
history_to_use = dialogue_history[-history_context_count:] if history_context_count > 0 else []
for turn in history_to_use:
prompt_parts.append(f"{turn.speaker}: {turn.content}")
prompt_parts.append("\n请根据角色设定和上下文生成符合角色特点的自然对话。回复应该在50-150字之间。")
return "\n".join(prompt_parts)
def generate_dialogue(self, session_id: str, current_speaker: str, topic_hint: str = "") -> Tuple[str, List[str]]:
"""生成角色对话"""
def generate_dialogue(self, session_id: str, current_speaker: str, topic_hint: str = "",
history_context_count: int = 3, context_info_count: int = 2) -> Tuple[str, List[str]]:
"""生成角色对话
Args:
session_id: 会话ID
current_speaker: 当前说话者
topic_hint: 话题提示
history_context_count: 使用的历史对话轮数默认3轮
context_info_count: 使用的上下文信息数量默认2个
"""
# 获取对话历史
dialogue_history = self.conv_mgr.get_conversation_history(session_id)
# 构建搜索查询
if dialogue_history:
# 基于最近的对话内容
recent_content = " ".join([turn.content for turn in dialogue_history[-2:]])
# 基于最近的对话内容(可控制数量)
recent_turns = dialogue_history[-history_context_count:] if history_context_count > 0 else []
recent_content = " ".join([turn.content for turn in recent_turns])
search_query = recent_content + " " + topic_hint
else:
# 首次对话
search_query = f"{current_speaker} {topic_hint} introduction greeting"
# 搜索相关上下文
context_info = self.kb.search_relevant_context(search_query, current_speaker, 10)
context_info = self.kb.search_relevant_context(search_query, current_speaker, max(10, context_info_count * 2))
# 生成提示
prompt = self.generate_character_prompt(current_speaker, context_info, dialogue_history)
# 生成提示(使用参数控制上下文数量)
prompt = self.generate_character_prompt(
current_speaker,
context_info,
dialogue_history,
history_context_count,
context_info_count
)
# 生成对话
try:
@ -386,8 +479,8 @@ class DualAIDialogueEngine:
)
# 记录使用的上下文
context_used = [f"{info['section']}.{info['subsection']}" for info in context_info]
avg_relevance = sum(info['relevance_score'] for info in context_info) / len(context_info) if context_info else 0.0
context_used = [f"{info['section']}.{info['subsection']}" for info in context_info[:context_info_count]]
avg_relevance = sum(info['relevance_score'] for info in context_info[:context_info_count]) / len(context_info[:context_info_count]) if context_info else 0.0
# 保存对话轮次
self.conv_mgr.add_dialogue_turn(
@ -400,23 +493,44 @@ class DualAIDialogueEngine:
print(f"✗ 对话生成失败: {e}")
return f"[{current_speaker}暂时无法回应]", []
def run_conversation_turn(self, session_id: str, characters: List[str], turns_count: int = 1, topic: str = ""):
"""运行对话轮次"""
results = []
def run_conversation_turn(self, session_id: str, characters: List[str], turns_count: int = 1, topic: str = "",
history_context_count: int = 3, context_info_count: int = 2):
"""运行对话轮次
Args:
session_id: 会话ID
characters: 角色列表
turns_count: 对话轮数
topic: 对话主题
history_context_count: 使用的历史对话轮数默认3轮
context_info_count: 使用的上下文信息数量默认2个
"""
results = []
print(f" [上下文设置: 历史{history_context_count}轮, 信息{context_info_count}个]")
for i in range(turns_count):
for char in characters:
response, context_used = self.generate_dialogue(session_id, char, topic)
response, context_used = self.generate_dialogue(
session_id,
char,
topic,
history_context_count,
context_info_count
)
results.append({
"speaker": char,
"content": response,
"context_used": context_used,
"turn": i + 1
"turn": i + 1,
"context_settings": {
"history_count": history_context_count,
"context_info_count": context_info_count
}
})
print(f"{char}: {response}")
if context_used:
print(f" [使用上下文: {', '.join(context_used)}]")
# if context_used:
# print(f" [使用上下文: {', '.join(context_used)}]")
print()
return results
@ -453,7 +567,13 @@ def main():
if not os.path.exists(lora_model_path):
lora_model_path = None
llm_generator = NPCDialogueGenerator(base_model_path, lora_model_path)
# 创建对话生成器并传入角色数据
if hasattr(kb, 'character_data') and kb.character_data:
print("✓ 使用knowledge_base角色数据创建对话生成器")
llm_generator = NPCDialogueGenerator(base_model_path, lora_model_path, kb.character_data)
else:
print("⚠ 使用内置角色数据创建对话生成器")
llm_generator = NPCDialogueGenerator(base_model_path, lora_model_path)
# 创建对话引擎
dialogue_engine = DualAIDialogueEngine(kb, conv_mgr, llm_generator)
@ -491,8 +611,17 @@ def main():
topic = input("请输入对话主题(可选): ").strip()
turns = int(input("请输入对话轮次数量默认2: ").strip() or "2")
# 历史上下文控制选项
print("\n历史上下文设置:")
history_count = input("使用历史对话轮数默认30表示不使用: ").strip()
history_count = int(history_count) if history_count.isdigit() else 3
context_info_count = input("使用上下文信息数量默认2: ").strip()
context_info_count = int(context_info_count) if context_info_count.isdigit() else 2
print(f"\n开始对话 - 会话ID: {session_id}")
dialogue_engine.run_conversation_turn(session_id, characters, turns, topic)
print(f"上下文设置: 历史{history_count}轮, 信息{context_info_count}")
dialogue_engine.run_conversation_turn(session_id, characters, turns, topic, history_count, context_info_count)
elif choice == '2':
# 继续已有对话
@ -523,8 +652,17 @@ def main():
topic = input("请输入对话主题(可选): ").strip()
turns = int(input("请输入对话轮次数量默认1: ").strip() or "1")
# 历史上下文控制选项
print("\n历史上下文设置:")
history_count = input("使用历史对话轮数默认30表示不使用: ").strip()
history_count = int(history_count) if history_count.isdigit() else 3
context_info_count = input("使用上下文信息数量默认2: ").strip()
context_info_count = int(context_info_count) if context_info_count.isdigit() else 2
print(f"\n继续对话 - 会话ID: {session_id}")
dialogue_engine.run_conversation_turn(session_id, characters, turns, topic)
print(f"上下文设置: 历史{history_count}轮, 信息{context_info_count}")
dialogue_engine.run_conversation_turn(session_id, characters, turns, topic, history_count, context_info_count)
else:
print("❌ 无效的会话编号")
except ValueError:

View File

@ -19,22 +19,100 @@ if platform.system() == "Windows":
multiprocessing.set_start_method('spawn', force=True)
class NPCDialogueGenerator:
def __init__(self, base_model_path: str, lora_model_path: Optional[str] = None):
def __init__(self, base_model_path: str, lora_model_path: Optional[str] = None, external_character_data: Optional[Dict] = None):
"""
初始化NPC对话生成器
Args:
base_model_path: 基础模型路径
lora_model_path: LoRA模型路径可选
external_character_data: 外部角色数据可选优先使用
"""
self.base_model_path = base_model_path
self.lora_model_path = lora_model_path
self.model = None
self.tokenizer = None
self.character_profiles = self._load_character_profiles()
# 优先使用外部角色数据,如果没有则使用内置数据
if external_character_data:
self.character_profiles = self._process_external_character_data(external_character_data)
print(f"✓ 使用外部角色数据: {list(self.character_profiles.keys())}")
else:
self.character_profiles = self._load_character_profiles()
print(f"✓ 使用内置角色数据: {list(self.character_profiles.keys())}")
self._load_model()
def _process_external_character_data(self, external_data: Dict) -> Dict:
"""
处理外部角色数据转换为对话生成器可用的格式
Args:
external_data: 来自knowledge_base的角色数据
Returns:
处理后的角色数据字典
"""
processed_profiles = {}
for char_name, char_data in external_data.items():
# 提取基本信息
basic_info = char_data.get('basic_info', {})
personality = char_data.get('personality', {})
background = char_data.get('background', {})
skills = char_data.get('skills_and_abilities', {})
speech_patterns = char_data.get('speech_patterns', {})
# 构建角色画像
profile = {
"name": char_data.get('character_name', char_name),
"title": basic_info.get('occupation', '未知'),
"personality": personality.get('core_traits', []) + personality.get('strengths', []),
"background": background.get('childhood', '') + ' ' + background.get('education', ''),
"speech_patterns": speech_patterns.get('vocabulary', []) + speech_patterns.get('tone', []),
"sample_dialogues": self._generate_sample_dialogues(char_data),
# 保存完整数据供高级功能使用
"full_data": char_data
}
processed_profiles[char_name] = profile
return processed_profiles
def _generate_sample_dialogues(self, char_data: Dict) -> List[str]:
"""
基于角色数据生成示例对话
Args:
char_data: 角色数据
Returns:
示例对话列表
"""
# 这里可以根据角色的性格、背景等生成更合适的示例对话
# 暂时返回一些通用的示例
basic_info = char_data.get('basic_info', {})
occupation = basic_info.get('occupation', '角色')
if '侦探' in occupation or '调查员' in occupation:
return [
"我需要仔细分析这个案件。",
"每个细节都可能很重要。",
"让我重新梳理一下线索。"
]
elif '教授' in occupation or '博士' in occupation:
return [
"根据我的研究,这个现象很特殊。",
"我们需要更谨慎地处理这个问题。",
"知识就是力量,但也要小心使用。"
]
else:
return [
"我遇到了一些困难。",
"请帮帮我。",
"这太奇怪了。"
]
def _load_character_profiles(self) -> Dict:
"""加载角色画像数据"""
return {

3748
AITrain/test.jsonl Normal file

File diff suppressed because it is too large Load Diff