修复服务器bug

This commit is contained in:
997146918 2025-07-09 19:58:44 +08:00
parent 23b62b60a5
commit d1326b7776
5 changed files with 182 additions and 138 deletions

View File

@ -1,21 +1,47 @@
import logging
from typing import Tuple
import requests
from ollama import Client, ResponseError
import tiktoken
import random
from Utils.AIGCLog import AIGCLog
class AICore:
modelMaxTokens = 128000
# 初始化 DeepSeek 使用的 Tokenizer (cl100k_base)
encoder = tiktoken.get_encoding("cl100k_base")
logger = AIGCLog(name = "AIGC", log_file = "aigc.log")
def __init__(self, model):
#初始化ollama客户端
self.ollamaClient = Client(host='http://localhost:11434', headers={'x-some-header': 'some-value'})
self.modelName = model
response = self.ollamaClient.show(model)
modelMaxTokens = response.modelinfo['qwen2.context_length']
def getPromptToken(self, prompt)-> int:
tokens = self.encoder.encode(prompt)
return len(tokens)
def generateAI(self, promptStr: str) -> Tuple[bool, str]:
try:
response = self.ollamaClient.generate(
model = self.modelName,
stream = False,
prompt = promptStr,
options={
"temperature": random.uniform(1.0, 1.5),
"repeat_penalty": 1.2, # 抑制重复
"top_p": random.uniform(0.7, 0.95),
"num_ctx": 4096, # 上下文长度
}
)
return True, response.response
except ResponseError as e:
if e.status_code == 503:
print("🔄 服务不可用5秒后重试...")
return False,"ollama 服务不可用"
except Exception as e:
print(f"🔥 未预料错误: {str(e)}")
return False, "未预料错误"

View File

@ -103,17 +103,18 @@ class DatabaseHandle:
conn.commit()
return cursor.lastrowid
def get_chats_by_character_id(self, character_id: int) -> list:
def get_chats_by_character_id(self, character_id: str) -> list:
"""
根据角色ID查询聊天记录target_id为空时返回全部数据
:param target_id: 目标角色IDNone时返回全部记录
:return: 聊天记录字典列表
"""
sorted_ids = sorted(character_id.split(","), key=int) # 按数值升序
normalized_param = ",".join(sorted_ids)
with self._get_connection() as conn:
cursor = conn.cursor()
sql = "SELECT * FROM chat_records WHERE ',' || character_ids || ',' LIKE '%,' || ? || ',%'"
params = (str(character_id))
cursor.execute(sql, params)
# 转换结果为字典列表
sql = "SELECT * FROM chat_records WHERE character_ids = ?"
cursor.execute(sql, (normalized_param,))
columns = [col[0] for col in cursor.description]
return [dict(zip(columns, row)) for row in cursor.fetchall()]

View File

@ -2,7 +2,7 @@
chcp 65001 > nul
set OLLAMA_MODEL=deepseek-r1:7b
rem 启动Ollama服务
start "Ollama DeepSeek" cmd /k ollama run %OLLAMA_MODEL%
start "Ollama DeepSeek" cmd /k ollama serve
rem 检测11434端口是否就绪
echo 等待Ollama服务启动...

Binary file not shown.

View File

@ -26,11 +26,15 @@ parser.add_argument('--model', type=str, default='deepseek-r1:1.5b',
args = parser.parse_args()
logger.log(logging.INFO, f"使用的模型是 {args.model}")
maxAIRegerateCount = 5
maxAIRegerateCount = 5 #最大重新生成次数
regenerateCount = 1 #当前重新生成次数
totalAIGenerateCount = 1 #客户端生成AI响应总数
currentGenerateCount = 0 #当前生成次数
lastPrompt = ""
character_id1 = 0
character_id2 = 0
aicore = AICore(args.model)
database = DatabaseHandle()
async def heartbeat(websocket: WebSocket):
pass
@ -48,6 +52,18 @@ async def senddata(websocket: WebSocket, protocol: dict):
json_string = json.dumps(protocol, ensure_ascii=False)
await websocket.send_text(json_string)
async def sendprotocol(websocket: WebSocket, cmd: str, status: int, message: str, data: str):
# 将AI响应发送回UE5
protocol = {}
protocol["cmd"] = cmd
protocol["status"] = status
protocol["message"] = message
protocol["data"] = data
if websocket.client_state == WebSocketState.CONNECTED:
json_string = json.dumps(protocol, ensure_ascii=False)
await websocket.send_text(json_string)
# WebSocket路由处理
@app.websocket("/ws/{client_id}")
async def websocket_endpoint(websocket: WebSocket, client_id: str):
@ -62,20 +78,7 @@ async def websocket_endpoint(websocket: WebSocket, client_id: str):
data = await websocket.receive_text()
logger.log(logging.INFO, f"收到UE5消息 [{client_id}]: {data}")
await process_protocol_json(data, websocket)
# success, prompt = process_prompt(data)
# global lastPrompt
# lastPrompt = prompt
# # 调用AI生成响应
# if(success):
# asyncio.create_task(generateAIChat(prompt, websocket))
# await senddata(websocket, 0, [])
# else:
# await senddata(websocket, -1, [])
except WebSocketDisconnect:
#manager.disconnect(client_id)
logger.log(logging.WARNING, f"UE5客户端主动断开 [{client_id}]")
@ -95,6 +98,72 @@ async def handle_characterlist(client: WebSocket):
protocol["data"] = json.dumps(characterforUE)
await senddata(client, protocol)
async def generate_aichat(promptStr: str, client: WebSocket| None = None):
dynamic_token = str(int(time.time() % 1000))
promptStr = f"""
[动态标识码:{dynamic_token}]
""" + promptStr
logger.log(logging.INFO, "prompt:" + promptStr)
starttime = time.time()
success, response, = aicore.generateAI(promptStr)
if(success):
logger.log(logging.INFO, "接口调用耗时 :" + str(time.time() - starttime))
logger.log(logging.INFO, "AI生成" + response)
#处理ai输出内容
think_remove_text = re.sub(r'<think>.*?</think>', '', response, flags=re.DOTALL)
pattern = r".*<format>(.*?)</format>" # .* 吞掉前面所有字符,定位最后一组
match = re.search(pattern, think_remove_text, re.DOTALL)
if not match:
#生成内容格式错误
if await reGenerateAIChat(lastPrompt, client):
pass
else:
#超过重新生成次数
logger.log(logging.ERROR, "请更换prompt,或者升级模型大小")
await sendprotocol(client, "AiChatGenerate", 0, "请更换prompt,或者升级模型大小", "")
else:
#生成内容格式正确
core_dialog = match.group(1).strip()
dialog_lines = [line.strip() for line in core_dialog.split('\n') if line.strip()]
if len(dialog_lines) != 4:
#生成内容格式错误
if await reGenerateAIChat(lastPrompt, client):
pass
else:
logger.log(logging.ERROR, "请更换prompt或者升级模型大小")
await sendprotocol(client, "AiChatGenerate", 0, "请更换prompt或者升级模型大小", "")
else:
logger.log(logging.INFO, "AI的输出正确\n" + core_dialog)
global regenerateCount
regenerateCount = 0
#保存数据到数据库
database.add_chat({"character_ids":f"{character_id1},{character_id2}","chat":f"{" ".join(dialog_lines)}"})
await sendprotocol(client, "AiChatGenerate", 1, "AI生成成功", "|".join(dialog_lines))
else:
await sendprotocol(client, "AiChatGenerate", -1, "调用ollama服务失败", "")
async def handle_aichat_generate(client: WebSocket, aichat_data:str):
### 处理ai prompt###
success, prompt = process_prompt(aichat_data)
global lastPrompt
lastPrompt = prompt
# 调用AI生成响应
if(success):
#asyncio.create_task(generateAIChat(prompt, client))
global currentGenerateCount
while currentGenerateCount < totalAIGenerateCount:
currentGenerateCount += 1
await generate_aichat(prompt, client)
currentGenerateCount = 0
#全部生成完成
await sendprotocol(client, "AiChatGenerate", 2, "AI生成成功", "")
else:
#prompt生成失败
await sendprotocol(client, "AiChatGenerate", -1, "prompt convert failed", "")
async def handle_addcharacter(client: WebSocket, chracterJson: str):
### 添加角色到数据库 ###
character_info = json.loads(chracterJson)
@ -113,6 +182,8 @@ async def process_protocol_json(json_str: str, client: WebSocket):
await handle_characterlist(client)
elif cmd == "AddCharacter":
await handle_addcharacter(client, data)
elif cmd == "AiChatGenerate":
await handle_aichat_generate(client, data)
except json.JSONDecodeError as e:
print(f"JSON解析错误: {e}")
@ -121,42 +192,65 @@ async def process_protocol_json(json_str: str, client: WebSocket):
def process_prompt(promptFromUE: str) -> Tuple[bool, str]:
try:
data = json.loads(promptFromUE)
global maxAIRegerateCount
# 提取数据
dialog_scene = data["dialogContent"]["dialogScene"]
persons = data["persons"]
dialog_scene = data["dialogScene"]
global totalAIGenerateCount
totalAIGenerateCount = data["generateCount"]
persons = data["characterName"]
assert len(persons) == 2
for person in persons:
print(f" 姓名: {person['name']}, 职业: {person['job']}")
characterInfo1 = database.get_character_byname(persons[0])
characterInfo2 = database.get_character_byname(persons[1])
global character_id1, character_id2
character_id1 = characterInfo1[0]["id"]
character_id2 = characterInfo2[0]["id"]
chat_history = database.get_chats_by_character_id(str(character_id1) + "," + str(character_id2))
#整理对话记录
result = result = '\n'.join([item['chat'] for item in chat_history])
prompt = f"""
你是一个游戏NPC对话生成器请严格按以下要求生成两个路人NPC{persons[0]["name"]}{persons[1]["name"]}的日常对话
1. 生成2轮完整对话每轮包含双方各一次发言共4句
2. 对话场景{dialog_scene}
3. 角色设定
{persons[0]["name"]}{persons[0]["job"]}
{persons[1]["name"]}{persons[1]["job"]}
4. 对话要求
* 每轮对话需自然衔接体现生活细节
* 避免任务指引或玩家交互内容
* 结尾保持对话未完成感
5. 输出格式
<format>
{persons[0]["name"]}[第一轮发言]
{persons[1]["name"]}[第一轮回应]
{persons[0]["name"]}[第二轮发言]
{persons[1]["name"]}[第二轮回应]
</format>
6.重要若未按此格式输出请重新生成直至完全符合
#你是一个游戏NPC对话生成器。请严格按以下要求生成两个角色的日常对话
#对话的背景
{dialog_scene}
1. 生成2轮完整对话每轮包含双方各一次发言共4句
2.角色设定
{characterInfo1[0]["name"]}: {{
"姓名": {characterInfo1[0]["name"]},
"年龄": {characterInfo1[0]["age"]},
"性格": {characterInfo1[0]["personality"]},
"职业": {characterInfo1[0]["profession"]},
"背景": {characterInfo1[0]["characterBackground"]},
"语言风格": {characterInfo1[0]["chat_style"]}
}},
{characterInfo2[0]["name"]}: {{
"姓名": {characterInfo2[0]["name"]},
"年龄": {characterInfo2[0]["age"]},
"性格": {characterInfo2[0]["personality"]},
"职业": {characterInfo2[0]["profession"]},
"背景": {characterInfo2[0]["characterBackground"]},
"语言风格": {characterInfo2[0]["chat_style"]}
}}
3.参考的历史对话内容
{result}
4.输出格式
<format>
张三[第一轮发言]
李明[第一轮回应]
张三[第二轮发言]
李明[第二轮回应]
</format>
5.重要若未按此格式输出请重新生成直至完全符合
"""
return True, prompt
except json.JSONDecodeError as e:
print(f"JSON解析错误: {e}")
return False, ""
except KeyError as e:
print(f"缺少必要字段: {e}")
except Exception as e:
print(f"发生错误:{type(e).__name__} - {e}")
return False, ""
@ -173,91 +267,15 @@ def run_webserver():
log_level="info"
)
async def generateAIChat(promptStr: str, websocket: WebSocket| None = None):
#动态标识吗 防止重复输入导致的结果重复
dynamic_token = str(int(time.time() % 1000))
promptStr = f"""
[动态标识码:{dynamic_token}]
""" + promptStr
logger.log(logging.INFO, "prompt:" + promptStr)
starttime = time.time()
receivemessage=[
{"role": "system", "content": promptStr}
]
try:
# response = ollamaClient.chat(
# model = args.model,
# stream = False,
# messages = receivemessage,
# options={
# "temperature": random.uniform(1.0, 1.5),
# "repeat_penalty": 1.2, # 抑制重复
# "top_p": random.uniform(0.7, 0.95),
# "num_ctx": 4096, # 上下文长度
# "seed": int(time.time() * 1000) % 1000000
# }
# )
response = ollamaClient.generate(
model = args.model,
stream = False,
prompt = promptStr,
options={
"temperature": random.uniform(1.0, 1.5),
"repeat_penalty": 1.2, # 抑制重复
"top_p": random.uniform(0.7, 0.95),
"num_ctx": 4096, # 上下文长度
}
)
except ResponseError as e:
if e.status_code == 503:
print("🔄 服务不可用5秒后重试...")
return await senddata(websocket, -1, messages=["ollama 服务不可用"])
except Exception as e:
print(f"🔥 未预料错误: {str(e)}")
return await senddata(websocket, -1, messages=["未预料错误"])
logger.log(logging.INFO, "接口调用耗时 :" + str(time.time() - starttime))
#aiResponse = response['message']['content']
aiResponse = response['response']
logger.log(logging.INFO, "AI生成" + aiResponse)
#处理ai输出内容
think_remove_text = re.sub(r'<think>.*?</think>', '', aiResponse, flags=re.DOTALL)
pattern = r".*<format>(.*?)</format>" # .* 吞掉前面所有字符,定位最后一组
match = re.search(pattern, think_remove_text, re.DOTALL)
if not match:
if await reGenerateAIChat(lastPrompt, websocket):
pass
else:
logger.log(logging.ERROR, "请更换prompt或者升级模型大小")
await senddata(websocket, -1, messages=["请更换prompt或者升级模型大小"])
else:
core_dialog = match.group(1).strip()
dialog_lines = [line for line in core_dialog.split('\n') if line.strip()]
if len(dialog_lines) != 4:
if await reGenerateAIChat(lastPrompt, websocket):
pass
else:
logger.log(logging.ERROR, "请更换prompt或者升级模型大小")
await senddata(websocket, -1, messages=["请更换prompt或者升级模型大小"])
else:
logger.log(logging.INFO, "AI的输出正确\n" + core_dialog)
global regenerateCount
regenerateCount = 0
await senddata(websocket, 1, dialog_lines)
regenerateCount = 1
async def reGenerateAIChat(prompt: str, websocket: WebSocket):
global regenerateCount
if regenerateCount < maxAIRegerateCount:
regenerateCount += 1
logger.log(logging.ERROR, f"AI输出格式不正确重新进行生成 {regenerateCount}/{maxAIRegerateCount}")
await senddata(websocket, 2, messages=["ai生成格式不正确 重新进行生成"])
await sendprotocol(websocket, "AiChatGenerate", 0, "ai生成格式不正确 重新进行生成", "")
await asyncio.sleep(0)
prompt = prompt + "补充上一次的输出格式错误严格执行prompt中第5条的输出格式要求"
await generateAIChat(prompt, websocket)
prompt = prompt + "补充上一次的输出格式错误严格执行prompt中的输出格式要求"
await generate_aichat(prompt, websocket)
return True
else:
regenerateCount = 0
@ -272,19 +290,18 @@ if __name__ == "__main__":
#Test database
database = DatabaseHandle()
id = database.add_character({"name":"李明","age":30,"personality":"活泼健谈","profession":"产品经理"
,"characterBackground":"公司资深产品经理","chat_style":"热情"})
# id = database.add_character({"name":"李明","age":30,"personality":"活泼健谈","profession":"产品经理"
# ,"characterBackground":"公司资深产品经理","chat_style":"热情"})
characters = database.get_character_byname("")
#characters = database.get_character_byname("")
#chat_id = database.add_chat({"character_ids":"1,2","chat":"张三:[第一轮发言] 李明:[第一轮回应] 张三:[第二轮发言] 李明:[第二轮回应"})
chat = database.get_chats_by_character_id(3)
if id == 0:
logger.log(logging.ERROR, f"角色 张三已经添加到数据库")
#chat = database.get_chats_by_character_id(3)
#
# Test AI
aicore.getPromptToken("测试功能")
#aicore.getPromptToken("测试功能")
# asyncio.run(
# generateAIChat(promptStr = f"""
# #你是一个游戏NPC对话生成器。请严格按以下要求生成两个角色的日常对话