修复服务器bug
This commit is contained in:
parent
23b62b60a5
commit
d1326b7776
@ -1,17 +1,22 @@
|
||||
import logging
|
||||
from typing import Tuple
|
||||
import requests
|
||||
from ollama import Client, ResponseError
|
||||
import tiktoken
|
||||
import random
|
||||
from Utils.AIGCLog import AIGCLog
|
||||
|
||||
class AICore:
|
||||
modelMaxTokens = 128000
|
||||
# 初始化 DeepSeek 使用的 Tokenizer (cl100k_base)
|
||||
encoder = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
logger = AIGCLog(name = "AIGC", log_file = "aigc.log")
|
||||
|
||||
|
||||
def __init__(self, model):
|
||||
#初始化ollama客户端
|
||||
self.ollamaClient = Client(host='http://localhost:11434', headers={'x-some-header': 'some-value'})
|
||||
self.modelName = model
|
||||
response = self.ollamaClient.show(model)
|
||||
modelMaxTokens = response.modelinfo['qwen2.context_length']
|
||||
|
||||
@ -19,3 +24,24 @@ class AICore:
|
||||
tokens = self.encoder.encode(prompt)
|
||||
return len(tokens)
|
||||
|
||||
def generateAI(self, promptStr: str) -> Tuple[bool, str]:
|
||||
try:
|
||||
response = self.ollamaClient.generate(
|
||||
model = self.modelName,
|
||||
stream = False,
|
||||
prompt = promptStr,
|
||||
options={
|
||||
"temperature": random.uniform(1.0, 1.5),
|
||||
"repeat_penalty": 1.2, # 抑制重复
|
||||
"top_p": random.uniform(0.7, 0.95),
|
||||
"num_ctx": 4096, # 上下文长度
|
||||
}
|
||||
)
|
||||
return True, response.response
|
||||
except ResponseError as e:
|
||||
if e.status_code == 503:
|
||||
print("🔄 服务不可用,5秒后重试...")
|
||||
return False,"ollama 服务不可用"
|
||||
except Exception as e:
|
||||
print(f"🔥 未预料错误: {str(e)}")
|
||||
return False, "未预料错误"
|
@ -103,17 +103,18 @@ class DatabaseHandle:
|
||||
conn.commit()
|
||||
return cursor.lastrowid
|
||||
|
||||
def get_chats_by_character_id(self, character_id: int) -> list:
|
||||
def get_chats_by_character_id(self, character_id: str) -> list:
|
||||
"""
|
||||
根据角色ID查询聊天记录(target_id为空时返回全部数据)
|
||||
:param target_id: 目标角色ID(None时返回全部记录)
|
||||
:return: 聊天记录字典列表
|
||||
"""
|
||||
|
||||
sorted_ids = sorted(character_id.split(","), key=int) # 按数值升序
|
||||
normalized_param = ",".join(sorted_ids)
|
||||
with self._get_connection() as conn:
|
||||
cursor = conn.cursor()
|
||||
sql = "SELECT * FROM chat_records WHERE ',' || character_ids || ',' LIKE '%,' || ? || ',%'"
|
||||
params = (str(character_id))
|
||||
cursor.execute(sql, params)
|
||||
# 转换结果为字典列表
|
||||
sql = "SELECT * FROM chat_records WHERE character_ids = ?"
|
||||
cursor.execute(sql, (normalized_param,))
|
||||
columns = [col[0] for col in cursor.description]
|
||||
return [dict(zip(columns, row)) for row in cursor.fetchall()]
|
@ -2,7 +2,7 @@
|
||||
chcp 65001 > nul
|
||||
set OLLAMA_MODEL=deepseek-r1:7b
|
||||
rem 启动Ollama服务
|
||||
start "Ollama DeepSeek" cmd /k ollama run %OLLAMA_MODEL%
|
||||
start "Ollama DeepSeek" cmd /k ollama serve
|
||||
|
||||
rem 检测11434端口是否就绪
|
||||
echo 等待Ollama服务启动...
|
||||
|
BIN
AIGC/data.db
BIN
AIGC/data.db
Binary file not shown.
267
AIGC/main.py
267
AIGC/main.py
@ -26,11 +26,15 @@ parser.add_argument('--model', type=str, default='deepseek-r1:1.5b',
|
||||
args = parser.parse_args()
|
||||
logger.log(logging.INFO, f"使用的模型是 {args.model}")
|
||||
|
||||
maxAIRegerateCount = 5
|
||||
maxAIRegerateCount = 5 #最大重新生成次数
|
||||
regenerateCount = 1 #当前重新生成次数
|
||||
totalAIGenerateCount = 1 #客户端生成AI响应总数
|
||||
currentGenerateCount = 0 #当前生成次数
|
||||
lastPrompt = ""
|
||||
|
||||
character_id1 = 0
|
||||
character_id2 = 0
|
||||
aicore = AICore(args.model)
|
||||
|
||||
database = DatabaseHandle()
|
||||
|
||||
async def heartbeat(websocket: WebSocket):
|
||||
pass
|
||||
@ -48,6 +52,18 @@ async def senddata(websocket: WebSocket, protocol: dict):
|
||||
json_string = json.dumps(protocol, ensure_ascii=False)
|
||||
await websocket.send_text(json_string)
|
||||
|
||||
async def sendprotocol(websocket: WebSocket, cmd: str, status: int, message: str, data: str):
|
||||
# 将AI响应发送回UE5
|
||||
protocol = {}
|
||||
protocol["cmd"] = cmd
|
||||
protocol["status"] = status
|
||||
protocol["message"] = message
|
||||
protocol["data"] = data
|
||||
|
||||
if websocket.client_state == WebSocketState.CONNECTED:
|
||||
json_string = json.dumps(protocol, ensure_ascii=False)
|
||||
await websocket.send_text(json_string)
|
||||
|
||||
# WebSocket路由处理
|
||||
@app.websocket("/ws/{client_id}")
|
||||
async def websocket_endpoint(websocket: WebSocket, client_id: str):
|
||||
@ -63,19 +79,6 @@ async def websocket_endpoint(websocket: WebSocket, client_id: str):
|
||||
logger.log(logging.INFO, f"收到UE5消息 [{client_id}]: {data}")
|
||||
await process_protocol_json(data, websocket)
|
||||
|
||||
# success, prompt = process_prompt(data)
|
||||
# global lastPrompt
|
||||
# lastPrompt = prompt
|
||||
# # 调用AI生成响应
|
||||
# if(success):
|
||||
# asyncio.create_task(generateAIChat(prompt, websocket))
|
||||
# await senddata(websocket, 0, [])
|
||||
# else:
|
||||
# await senddata(websocket, -1, [])
|
||||
|
||||
|
||||
|
||||
|
||||
except WebSocketDisconnect:
|
||||
#manager.disconnect(client_id)
|
||||
logger.log(logging.WARNING, f"UE5客户端主动断开 [{client_id}]")
|
||||
@ -95,6 +98,72 @@ async def handle_characterlist(client: WebSocket):
|
||||
protocol["data"] = json.dumps(characterforUE)
|
||||
await senddata(client, protocol)
|
||||
|
||||
async def generate_aichat(promptStr: str, client: WebSocket| None = None):
|
||||
dynamic_token = str(int(time.time() % 1000))
|
||||
promptStr = f"""
|
||||
[动态标识码:{dynamic_token}]
|
||||
""" + promptStr
|
||||
logger.log(logging.INFO, "prompt:" + promptStr)
|
||||
starttime = time.time()
|
||||
success, response, = aicore.generateAI(promptStr)
|
||||
if(success):
|
||||
logger.log(logging.INFO, "接口调用耗时 :" + str(time.time() - starttime))
|
||||
logger.log(logging.INFO, "AI生成" + response)
|
||||
#处理ai输出内容
|
||||
think_remove_text = re.sub(r'<think>.*?</think>', '', response, flags=re.DOTALL)
|
||||
pattern = r".*<format>(.*?)</format>" # .* 吞掉前面所有字符,定位最后一组
|
||||
match = re.search(pattern, think_remove_text, re.DOTALL)
|
||||
if not match:
|
||||
#生成内容格式错误
|
||||
if await reGenerateAIChat(lastPrompt, client):
|
||||
pass
|
||||
else:
|
||||
#超过重新生成次数
|
||||
logger.log(logging.ERROR, "请更换prompt,或者升级模型大小")
|
||||
await sendprotocol(client, "AiChatGenerate", 0, "请更换prompt,或者升级模型大小", "")
|
||||
else:
|
||||
#生成内容格式正确
|
||||
core_dialog = match.group(1).strip()
|
||||
dialog_lines = [line.strip() for line in core_dialog.split('\n') if line.strip()]
|
||||
if len(dialog_lines) != 4:
|
||||
#生成内容格式错误
|
||||
if await reGenerateAIChat(lastPrompt, client):
|
||||
pass
|
||||
else:
|
||||
logger.log(logging.ERROR, "请更换prompt,或者升级模型大小")
|
||||
await sendprotocol(client, "AiChatGenerate", 0, "请更换prompt,或者升级模型大小", "")
|
||||
else:
|
||||
logger.log(logging.INFO, "AI的输出正确:\n" + core_dialog)
|
||||
global regenerateCount
|
||||
regenerateCount = 0
|
||||
#保存数据到数据库
|
||||
database.add_chat({"character_ids":f"{character_id1},{character_id2}","chat":f"{" ".join(dialog_lines)}"})
|
||||
|
||||
await sendprotocol(client, "AiChatGenerate", 1, "AI生成成功", "|".join(dialog_lines))
|
||||
else:
|
||||
await sendprotocol(client, "AiChatGenerate", -1, "调用ollama服务失败", "")
|
||||
|
||||
async def handle_aichat_generate(client: WebSocket, aichat_data:str):
|
||||
### 处理ai prompt###
|
||||
success, prompt = process_prompt(aichat_data)
|
||||
global lastPrompt
|
||||
lastPrompt = prompt
|
||||
|
||||
# 调用AI生成响应
|
||||
if(success):
|
||||
#asyncio.create_task(generateAIChat(prompt, client))
|
||||
global currentGenerateCount
|
||||
while currentGenerateCount < totalAIGenerateCount:
|
||||
currentGenerateCount += 1
|
||||
await generate_aichat(prompt, client)
|
||||
|
||||
currentGenerateCount = 0
|
||||
#全部生成完成
|
||||
await sendprotocol(client, "AiChatGenerate", 2, "AI生成成功", "")
|
||||
else:
|
||||
#prompt生成失败
|
||||
await sendprotocol(client, "AiChatGenerate", -1, "prompt convert failed", "")
|
||||
|
||||
async def handle_addcharacter(client: WebSocket, chracterJson: str):
|
||||
### 添加角色到数据库 ###
|
||||
character_info = json.loads(chracterJson)
|
||||
@ -113,6 +182,8 @@ async def process_protocol_json(json_str: str, client: WebSocket):
|
||||
await handle_characterlist(client)
|
||||
elif cmd == "AddCharacter":
|
||||
await handle_addcharacter(client, data)
|
||||
elif cmd == "AiChatGenerate":
|
||||
await handle_aichat_generate(client, data)
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"JSON解析错误: {e}")
|
||||
@ -121,42 +192,65 @@ async def process_protocol_json(json_str: str, client: WebSocket):
|
||||
def process_prompt(promptFromUE: str) -> Tuple[bool, str]:
|
||||
try:
|
||||
data = json.loads(promptFromUE)
|
||||
global maxAIRegerateCount
|
||||
# 提取数据
|
||||
dialog_scene = data["dialogContent"]["dialogScene"]
|
||||
persons = data["persons"]
|
||||
dialog_scene = data["dialogScene"]
|
||||
global totalAIGenerateCount
|
||||
totalAIGenerateCount = data["generateCount"]
|
||||
persons = data["characterName"]
|
||||
|
||||
assert len(persons) == 2
|
||||
for person in persons:
|
||||
print(f" 姓名: {person['name']}, 职业: {person['job']}")
|
||||
characterInfo1 = database.get_character_byname(persons[0])
|
||||
characterInfo2 = database.get_character_byname(persons[1])
|
||||
global character_id1, character_id2
|
||||
character_id1 = characterInfo1[0]["id"]
|
||||
character_id2 = characterInfo2[0]["id"]
|
||||
chat_history = database.get_chats_by_character_id(str(character_id1) + "," + str(character_id2))
|
||||
#整理对话记录
|
||||
result = result = '\n'.join([item['chat'] for item in chat_history])
|
||||
|
||||
|
||||
prompt = f"""
|
||||
你是一个游戏NPC对话生成器。请严格按以下要求生成两个路人NPC({persons[0]["name"]}和{persons[1]["name"]})的日常对话:
|
||||
#你是一个游戏NPC对话生成器。请严格按以下要求生成两个角色的日常对话
|
||||
#对话的背景
|
||||
{dialog_scene}
|
||||
1. 生成【2轮完整对话】,每轮包含双方各一次发言(共4句)
|
||||
2. 对话场景:{dialog_scene}
|
||||
3. 角色设定:
|
||||
{persons[0]["name"]}:{persons[0]["job"]}
|
||||
{persons[1]["name"]}:{persons[1]["job"]}
|
||||
4. 对话要求:
|
||||
* 每轮对话需自然衔接,体现生活细节
|
||||
* 避免任务指引或玩家交互内容
|
||||
* 结尾保持对话未完成感
|
||||
5. 输出格式:
|
||||
2.角色设定
|
||||
{characterInfo1[0]["name"]}: {{
|
||||
"姓名": {characterInfo1[0]["name"]},
|
||||
"年龄": {characterInfo1[0]["age"]},
|
||||
"性格": {characterInfo1[0]["personality"]},
|
||||
"职业": {characterInfo1[0]["profession"]},
|
||||
"背景": {characterInfo1[0]["characterBackground"]},
|
||||
"语言风格": {characterInfo1[0]["chat_style"]}
|
||||
}},
|
||||
{characterInfo2[0]["name"]}: {{
|
||||
"姓名": {characterInfo2[0]["name"]},
|
||||
"年龄": {characterInfo2[0]["age"]},
|
||||
"性格": {characterInfo2[0]["personality"]},
|
||||
"职业": {characterInfo2[0]["profession"]},
|
||||
"背景": {characterInfo2[0]["characterBackground"]},
|
||||
"语言风格": {characterInfo2[0]["chat_style"]}
|
||||
}}
|
||||
3.参考的历史对话内容
|
||||
{result}
|
||||
4.输出格式:
|
||||
<format>
|
||||
{persons[0]["name"]}:[第一轮发言]
|
||||
{persons[1]["name"]}:[第一轮回应]
|
||||
{persons[0]["name"]}:[第二轮发言]
|
||||
{persons[1]["name"]}:[第二轮回应]
|
||||
张三:[第一轮发言]
|
||||
李明:[第一轮回应]
|
||||
张三:[第二轮发言]
|
||||
李明:[第二轮回应]
|
||||
</format>
|
||||
|
||||
6.重要!若未按此格式输出,请重新生成直至完全符合
|
||||
5.重要!若未按此格式输出,请重新生成直至完全符合
|
||||
"""
|
||||
return True, prompt
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"JSON解析错误: {e}")
|
||||
return False, ""
|
||||
except KeyError as e:
|
||||
print(f"缺少必要字段: {e}")
|
||||
except Exception as e:
|
||||
print(f"发生错误:{type(e).__name__} - {e}")
|
||||
return False, ""
|
||||
|
||||
|
||||
|
||||
@ -173,91 +267,15 @@ def run_webserver():
|
||||
log_level="info"
|
||||
)
|
||||
|
||||
async def generateAIChat(promptStr: str, websocket: WebSocket| None = None):
|
||||
#动态标识吗 防止重复输入导致的结果重复
|
||||
dynamic_token = str(int(time.time() % 1000))
|
||||
promptStr = f"""
|
||||
[动态标识码:{dynamic_token}]
|
||||
""" + promptStr
|
||||
logger.log(logging.INFO, "prompt:" + promptStr)
|
||||
starttime = time.time()
|
||||
receivemessage=[
|
||||
{"role": "system", "content": promptStr}
|
||||
]
|
||||
try:
|
||||
|
||||
# response = ollamaClient.chat(
|
||||
# model = args.model,
|
||||
# stream = False,
|
||||
# messages = receivemessage,
|
||||
# options={
|
||||
# "temperature": random.uniform(1.0, 1.5),
|
||||
# "repeat_penalty": 1.2, # 抑制重复
|
||||
# "top_p": random.uniform(0.7, 0.95),
|
||||
# "num_ctx": 4096, # 上下文长度
|
||||
# "seed": int(time.time() * 1000) % 1000000
|
||||
# }
|
||||
# )
|
||||
response = ollamaClient.generate(
|
||||
model = args.model,
|
||||
stream = False,
|
||||
prompt = promptStr,
|
||||
options={
|
||||
"temperature": random.uniform(1.0, 1.5),
|
||||
"repeat_penalty": 1.2, # 抑制重复
|
||||
"top_p": random.uniform(0.7, 0.95),
|
||||
"num_ctx": 4096, # 上下文长度
|
||||
}
|
||||
)
|
||||
|
||||
except ResponseError as e:
|
||||
if e.status_code == 503:
|
||||
print("🔄 服务不可用,5秒后重试...")
|
||||
return await senddata(websocket, -1, messages=["ollama 服务不可用"])
|
||||
except Exception as e:
|
||||
print(f"🔥 未预料错误: {str(e)}")
|
||||
return await senddata(websocket, -1, messages=["未预料错误"])
|
||||
logger.log(logging.INFO, "接口调用耗时 :" + str(time.time() - starttime))
|
||||
#aiResponse = response['message']['content']
|
||||
aiResponse = response['response']
|
||||
logger.log(logging.INFO, "AI生成" + aiResponse)
|
||||
#处理ai输出内容
|
||||
think_remove_text = re.sub(r'<think>.*?</think>', '', aiResponse, flags=re.DOTALL)
|
||||
pattern = r".*<format>(.*?)</format>" # .* 吞掉前面所有字符,定位最后一组
|
||||
match = re.search(pattern, think_remove_text, re.DOTALL)
|
||||
|
||||
if not match:
|
||||
if await reGenerateAIChat(lastPrompt, websocket):
|
||||
pass
|
||||
else:
|
||||
logger.log(logging.ERROR, "请更换prompt,或者升级模型大小")
|
||||
await senddata(websocket, -1, messages=["请更换prompt,或者升级模型大小"])
|
||||
|
||||
else:
|
||||
core_dialog = match.group(1).strip()
|
||||
dialog_lines = [line for line in core_dialog.split('\n') if line.strip()]
|
||||
if len(dialog_lines) != 4:
|
||||
if await reGenerateAIChat(lastPrompt, websocket):
|
||||
pass
|
||||
else:
|
||||
logger.log(logging.ERROR, "请更换prompt,或者升级模型大小")
|
||||
await senddata(websocket, -1, messages=["请更换prompt,或者升级模型大小"])
|
||||
else:
|
||||
logger.log(logging.INFO, "AI的输出正确:\n" + core_dialog)
|
||||
global regenerateCount
|
||||
regenerateCount = 0
|
||||
await senddata(websocket, 1, dialog_lines)
|
||||
|
||||
regenerateCount = 1
|
||||
async def reGenerateAIChat(prompt: str, websocket: WebSocket):
|
||||
global regenerateCount
|
||||
if regenerateCount < maxAIRegerateCount:
|
||||
regenerateCount += 1
|
||||
logger.log(logging.ERROR, f"AI输出格式不正确,重新进行生成 {regenerateCount}/{maxAIRegerateCount}")
|
||||
await senddata(websocket, 2, messages=["ai生成格式不正确, 重新进行生成"])
|
||||
await sendprotocol(websocket, "AiChatGenerate", 0, "ai生成格式不正确, 重新进行生成", "")
|
||||
await asyncio.sleep(0)
|
||||
prompt = prompt + "补充:上一次的输出格式错误,严格执行prompt中第5条的输出格式要求"
|
||||
await generateAIChat(prompt, websocket)
|
||||
prompt = prompt + "补充:上一次的输出格式错误,严格执行prompt中的输出格式要求"
|
||||
await generate_aichat(prompt, websocket)
|
||||
return True
|
||||
else:
|
||||
regenerateCount = 0
|
||||
@ -272,19 +290,18 @@ if __name__ == "__main__":
|
||||
|
||||
|
||||
#Test database
|
||||
database = DatabaseHandle()
|
||||
|
||||
|
||||
id = database.add_character({"name":"李明","age":30,"personality":"活泼健谈","profession":"产品经理"
|
||||
,"characterBackground":"公司资深产品经理","chat_style":"热情"})
|
||||
|
||||
characters = database.get_character_byname("")
|
||||
# id = database.add_character({"name":"李明","age":30,"personality":"活泼健谈","profession":"产品经理"
|
||||
# ,"characterBackground":"公司资深产品经理","chat_style":"热情"})
|
||||
|
||||
#characters = database.get_character_byname("")
|
||||
#chat_id = database.add_chat({"character_ids":"1,2","chat":"张三:[第一轮发言] 李明:[第一轮回应] 张三:[第二轮发言] 李明:[第二轮回应"})
|
||||
chat = database.get_chats_by_character_id(3)
|
||||
if id == 0:
|
||||
logger.log(logging.ERROR, f"角色 张三已经添加到数据库")
|
||||
#chat = database.get_chats_by_character_id(3)
|
||||
#
|
||||
# Test AI
|
||||
aicore.getPromptToken("测试功能")
|
||||
#aicore.getPromptToken("测试功能")
|
||||
# asyncio.run(
|
||||
# generateAIChat(promptStr = f"""
|
||||
# #你是一个游戏NPC对话生成器。请严格按以下要求生成两个角色的日常对话
|
||||
|
Loading…
x
Reference in New Issue
Block a user