152 lines
6.0 KiB
Python
152 lines
6.0 KiB
Python
#!/usr/bin/env python
|
||
# -*- coding: utf-8 -*-
|
||
'''
|
||
准备角色对话微调数据集
|
||
将test.jsonl转换为适合LoRA训练的格式
|
||
'''
|
||
|
||
import json
|
||
import random
|
||
from typing import List, Dict
|
||
|
||
def load_dialogue_data(file_path: str) -> List[Dict]:
|
||
"""加载对话数据"""
|
||
dialogues = []
|
||
with open(file_path, 'r', encoding='utf-8') as f:
|
||
for line in f:
|
||
data = json.loads(line.strip())
|
||
dialogues.append(data)
|
||
return dialogues
|
||
|
||
def get_dialogue_characters(dialogues: List[Dict]) -> List[str]:
|
||
characters = []
|
||
for dialogue in dialogues:
|
||
character = dialogue['role']
|
||
if character not in characters:
|
||
characters.append(character)
|
||
|
||
return characters
|
||
|
||
def group_dialogues_by_character(dialogues: List[Dict]) -> Dict[str, List[str]]:
|
||
"""按角色分组对话"""
|
||
character_dialogues = {}
|
||
for dialogue in dialogues:
|
||
character = dialogue['role']
|
||
content = dialogue['dialogue']
|
||
|
||
if character not in character_dialogues:
|
||
character_dialogues[character] = []
|
||
character_dialogues[character].append(content)
|
||
|
||
return character_dialogues
|
||
|
||
|
||
|
||
def create_training_samples(character_dialogues: Dict[str, List[str]], character_profiles: Dict) -> List[Dict]:
|
||
"""创建训练样本"""
|
||
training_samples = []
|
||
|
||
for character, dialogues in character_dialogues.items():
|
||
if character not in character_profiles:
|
||
continue
|
||
|
||
profile = character_profiles[character]
|
||
|
||
# 为每个角色创建多种类型的训练样本
|
||
for dialogue in dialogues:
|
||
# 样本1: 基于角色描述生成对话
|
||
sample1 = {
|
||
"instruction": f"你现在要扮演{character}。{profile['description']}。性格特点:{profile['personality']}。说话风格:{profile['speech_style']}。",
|
||
"input": "请根据你的角色设定说一段话。",
|
||
"output": dialogue
|
||
}
|
||
training_samples.append(sample1)
|
||
|
||
# 样本2: 基于场景生成对话
|
||
sample2 = {
|
||
"instruction": f"你是{character},{profile['background']}。",
|
||
"input": "在当前情境下,你会说什么?",
|
||
"output": dialogue
|
||
}
|
||
training_samples.append(sample2)
|
||
|
||
# 创建角色互动样本
|
||
for i in range(min(50, len(character_dialogues['克莱恩']))):
|
||
if i < len(character_dialogues.get('塔利姆', [])):
|
||
# 克莱恩与塔利姆的对话
|
||
sample = {
|
||
"instruction": "你是克莱恩,一位神秘学专家和侦探。塔利姆是你的客户,向你寻求帮助。",
|
||
"input": f"塔利姆对你说:{character_dialogues['塔利姆'][i % len(character_dialogues['塔利姆'])]}",
|
||
"output": character_dialogues['克莱恩'][i]
|
||
}
|
||
training_samples.append(sample)
|
||
|
||
return training_samples
|
||
|
||
def create_npc_dialogue_samples() -> List[Dict]:
|
||
"""创建专门的NPC对话样本"""
|
||
npc_samples = [
|
||
{
|
||
"instruction": "你是一个游戏中的NPC神秘学导师,名叫克莱恩。玩家向你寻求关于神秘学的建议。",
|
||
"input": "请告诉我关于灵界的知识。",
|
||
"output": "灵界是一个充满危险的地方,好奇往往是导致死亡的主要因素。如果你真的需要了解,记住永远不要直视那些不该看的存在。"
|
||
},
|
||
{
|
||
"instruction": "你是游戏中的阿兹克导师,经验丰富的神秘学大师。玩家遇到了困难。",
|
||
"input": "我在修炼中遇到了瓶颈,该怎么办?",
|
||
"output": "耐心是修炼的基础。不要急于求成,稳扎稳打比什么都重要。先巩固你现有的基础。"
|
||
},
|
||
{
|
||
"instruction": "你是游戏中的塔利姆,一个有文化的普通NPC,遇到了情感问题。",
|
||
"input": "你看起来有些困扰?",
|
||
"output": "噢,尊敬的冒险者,我有个朋友爱上了不该爱的人,这种情况该怎么处理?这不是《罗密欧与朱丽叶》的故事。"
|
||
},
|
||
{
|
||
"instruction": "你是游戏中的艾伦,一个遭遇神秘事件的NPC,需要玩家帮助。",
|
||
"input": "你遇到什么麻烦了?",
|
||
"output": "最近我总是遭遇各种厄运,摔跤、丢钱、被狗咬...我怀疑是不是受到了什么诅咒,请帮帮我!"
|
||
}
|
||
]
|
||
return npc_samples
|
||
def create_character_dialogue_samples(character:str, dialogues: List[Dict]) ->List[Dict]:
|
||
tempDialogue = ""
|
||
character_samples = []
|
||
for dialogue in dialogues:
|
||
speakCharacter = dialogue['role']
|
||
if(speakCharacter != character):
|
||
tempDialogue = dialogue['dialogue']
|
||
elif tempDialogue != '':
|
||
#确定是提问对话
|
||
character_samples.append({"instruction": tempDialogue,
|
||
"input": "",
|
||
"output": dialogue['dialogue']})
|
||
tempDialogue = ''
|
||
return character_samples
|
||
|
||
def main():
|
||
# 加载原始数据
|
||
dialogues = load_dialogue_data('./test.jsonl')
|
||
characters = get_dialogue_characters(dialogues)
|
||
character_dialogues = group_dialogues_by_character(dialogues)
|
||
print("角色统计:")
|
||
for char, convs in character_dialogues.items():
|
||
print(f" {char}: {len(convs)}条对话")
|
||
#获得最终训练数据
|
||
final_samples = {}
|
||
for character in characters:
|
||
final_samples[character] = create_character_dialogue_samples(character, dialogues)
|
||
|
||
|
||
|
||
|
||
# 保存为JSON格式
|
||
with open('./npc_dialogue_dataset.json', 'w', encoding='utf-8') as f:
|
||
json.dump(final_samples, f, ensure_ascii=False, indent=2)
|
||
|
||
print(f"\n生成了 {len(final_samples)} 个训练样本")
|
||
print("数据集已保存为: npc_dialogue_dataset.json")
|
||
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main() |